Home     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Astro Photo     The Collection     Forum     Blog New!     FAQ     Login  
→ Adopt this star  

HD 175305


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Characterizing the Chemistry of the Milky Way Stellar Halo: Detailed Chemical Analysis of a Metal-poor Stellar Stream
We present the results of a detailed abundance analysis of one of theconfirmed building blocks of the Milky Way stellar halo, a kinematicallycoherent metal-poor stellar stream. We have obtained high-resolution andhigh signal-to-noise spectra of 12 probable stream members using theMagellan Inamori Kyocera Echelle spectrograph on the Magellan-ClayTelescope at Las Campanas Observatory and the 2dCoude spectrograph onthe Smith Telescope at McDonald Observatory. We have derived abundancesor upper limits for 51 species of 46 elements in each of these stars.The stream members show a range of metallicity (-3.4 < [Fe/H]<-1.5) but are otherwise chemically homogeneous, with the samestar-to-star dispersion in [X/Fe] as the rest of the halo. This impliesthat, in principle, a significant fraction of the Milky Way stellar halocould have formed from accreted systems like the stream. The streamstars show minimal evolution in the ? or Fe-group elements overthe range of metallicity. This stream is enriched with material producedby the main and weak components of the rapid neutron-capture process andshows no evidence for enrichment by the slow neutron-capture process.This paper includes data gathered with the 6.5 m Magellan Telescopeslocated at Las Campanas Observatory, Chile.This paper includes data taken at The McDonald Observatory of theUniversity of Texas at Austin.

Chemical Abundances of Outer Halo Stars in the Milky Way
We present the chemical abundances of 57 metal-poor ([Fe/H] 5 kpc above andbelow the Galactic plane. High-resolution (R ˜ 50000-55000), highsignal-to-noise (S/N > 100) spectra for the sample stars obtainedwith Subaru/HDS were used to derive the chemical abundances of Na, Mg,Ca, Ti, Cr, Mn, Fe, Ni, Zn, Y, and Ba with an LTE abundance analysiscode. The resulting abundance data were combined with those presented inthe literature that mostly targeted at smaller Zmax stars,and both data were used to investigate any systematic trends in detailedabundance patterns depending on their kinematics. It was shown that, inthe metallicity range of ?2 < [Fe/H] < ?1, the [Mg/Fe]ratios for stars with Zmax > 5 kpc are systematicallylower (˜0.1 dex) than those with a smaller Zmax. Forthis metallicity range, a modest degree of depression in the [Si/Fe] andthe [Ca/Fe] ratios was also observed. This result of lower [?/Fe]for the assumed outer halo stars is consistent with previous studiesthat found a signature of lower [?/Fe] ratios for stars withextreme kinematics. The distribution of the [Mg/Fe] ratios for the outerhalo stars partly overlaps with that for stars belonging to the MilkyWay dwarf satellites in the metallicity interval of ?2 < [Fe/H]< ?1 and spans a range intermediate between the distributionsfor the inner halo stars and the stars belonging to the satellites. Ourresults confirm the inhomogeneous nature of the chemical abundanceswithin the Milky Way stellar halo, depending on the kinematic propertiesof the constituent stars, as suggested by earlier studies. Possibleimplications for the formation of the Milky Way halo and its relevanceto the suggested dual nature of the halo are discussed.

Study of isotopic fractions and abundances of the neutron-capture elements in HD 175305
The chemical abundances of metal-poor stars are excellent sources ofinformation for setting new constraints on models of Galactic chemicalevolution at low metallicities. In this paper we present an attempt tofit the elemental abundances observed in the bright, metal-poor giant HD175305, and derive isotopic fractions using a parametric model. Theobserved abundances can be well matched by the combined contributionsfrom s- and r-process material. The component coefficients of the r- ands-processes are C1 = 3.220 and C3 = 1.134,respectively. The Sm isotopic fraction in this star where the observedneutron-capture elements are produced is predicted to bef152+154 = 0.582, which suggests that, even though ther-process is predominantly responsible for the synthesis of theneutron-capture elements in the early Galaxy, the onset of the s-processhad already occurred at this metallicity of [Fe/H] = -1.6.

Chemical Compositions of Kinematically Selected Outer Halo Stars
Chemical abundances of 26 metal-poor dwarfs and giants are determinedfrom high-resolution and high signal-to-noise ratio spectra obtainedwith the Subaru/High Dispersion Spectrograph. The sample is selected sothat most of the objects have outer-halo kinematics. Self-consistentatmospheric parameters were determined by an iterative procedure basedon spectroscopic analysis. Abundances of 13 elements, includingα-elements (Mg, Si, Ca, Ti), odd-Z light elements (Na, Sc),iron-peak elements (Cr, Mn, Fe, Ni, Zn), and neutron-capture elements(Y, Ba), are determined by two independent data reduction and localthermodynamic equillibrium analysis procedures, confirming theconsistency of the stellar parameters and abundances results. We find adecreasing trend of [α/Fe] with increasing [Fe/H] for the range of–3.5< [Fe/H] <–1, as found by Stephens &Boesgaard. [Zn/Fe] values of most objects in our sample are slightlylower than the bulk of halo stars previously studied. These results arediscussed as possible chemical properties of the outer halo in theGalaxy.Based on data collected at the Subaru Telescope, which is operated bythe National Astronomical Observatory of Japan.

An Overview of the Rotational Behavior of Metal-poor Stars
This paper describes the behavior of the rotational velocity inmetal-poor stars ([Fe/H] <= -0.5 dex) in different evolutionarystages, based on vsin i values from the literature. Our sample iscomprised of stars in the field and some Galactic globular clusters,including stars on the main sequence, the red giant branch (RGB), andthe horizontal branch (HB). The metal-poor stars are, mainly, slowrotators, and their vsin i distribution along the HR diagram is quitehomogeneous. Nevertheless, a few moderate to high values of vsin i arefound in stars located on the main sequence and the HB. We show that theoverall distribution of vsin i values is basically independent ofmetallicity for the stars in our sample. In particular, thefast-rotating main sequence stars in our sample present rotation ratessimilar to their metal-rich counterparts, suggesting that some of themmay actually be fairly young, in spite of their low metallicity, or elsethat at least some of them would be better classified as blue stragglerstars. We do not find significant evidence of evolution in vsin i valuesas a function of position on the RGB; in particular, we do not confirmprevious suggestions that stars close to the RGB tip rotate faster thantheir less-evolved counterparts. While the presence of fast rotatorsamong moderately cool blue HB stars has been suggested to be due toangular momentum transport from a stellar core that has retainedsignificant angular momentum during its prior evolution, we find thatany such transport mechanisms most likely operate very fast as the stararrives on the zero-age HB (ZAHB), since we do not find a link betweenevolution off the ZAHB and vsin i values. We present an extensivetabulation of all quantities discussed in this paper, including rotationvelocities, temperatures, gravities, and metallicities [Fe/H], as wellas broadband magnitudes and colors.

The Geneva-Copenhagen survey of the solar neighbourhood. III. Improved distances, ages, and kinematics
Context: Ages, chemical compositions, velocity vectors, and Galacticorbits for stars in the solar neighbourhood are fundamental test datafor models of Galactic evolution. The Geneva-Copenhagen Survey of theSolar Neighbourhood (Nordström et al. 2004; GCS), amagnitude-complete, kinematically unbiased sample of 16 682 nearby F andG dwarfs, is the largest available sample with complete data for starswith ages spanning that of the disk. Aims: We aim to improve theaccuracy of the GCS data by implementing the recent revision of theHipparcos parallaxes. Methods: The new parallaxes yield improvedastrometric distances for 12 506 stars in the GCS. We also use theparallaxes to verify the distance calibration for uvby? photometryby Holmberg et al. (2007, A&A, 475, 519; GCS II). We add newselection criteria to exclude evolved cool stars giving unreliableresults and derive distances for 3580 stars with large parallax errorsor not observed by Hipparcos. We also check the GCS II scales of T_effand [Fe/H] and find no need for change. Results: Introducing thenew distances, we recompute MV for 16 086 stars, and U, V, W,and Galactic orbital parameters for the 13 520 stars that also haveradial-velocity measurements. We also recompute stellar ages from thePadova stellar evolution models used in GCS I-II, using the new valuesof M_V, and compare them with ages from the Yale-Yonsei andVictoria-Regina models. Finally, we compare the observed age-velocityrelation in W with three simulated disk heating scenarios to show thepotential of the data. Conclusions: With these revisions, thebasic data for the GCS stars should now be as reliable as is possiblewith existing techniques. Further improvement must await consolidationof the T_eff scale from angular diameters and fluxes, and the Gaiatrigonometric parallaxes. We discuss the conditions for improvingcomputed stellar ages from new input data, and for distinguishingdifferent disk heating scenarios from data sets of the size andprecision of the GCS.Full Table 1 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/501/941

The End of Nucleosynthesis: Production of Lead and Thorium in the Early Galaxy
We examine the Pb and Th abundances in 27 metal-poor stars(-3.1< [Fe/H] <-1.4) whose very heavy metal (Z >56) enrichment was produced only by the rapid (r-) nucleosynthesisprocess. New abundances are derived from Hubble Space Telescope/SpaceTelescope Imaging Spectrograph, Keck/High Resolution EchelleSpectrograph, and Very Large Telescope/UV-Visual Echelle Spectrographspectra and combined with other measurements from the literature to forma more complete picture of nucleosynthesis of the heaviest elementsproduced in the r-process. In all cases, the abundance ratios among therare earth elements and the third r-process peak elements considered(La, Eu, Er, Hf, and Ir) are constant and equivalent to the scaled solarsystem r-process abundance distribution. We compare the stellarobservations with r-process calculations within the classical"waiting-point" approximation. In these computations a superposition of15 weighted neutron-density components in the range 23 <=lognn <= 30 is fit to the r-process abundance peaks tosuccessfully reproduce both the stable solar system isotopicdistribution and the stable heavy element abundance pattern between Baand U in low-metallicity stars. Under these astrophysical conditions,which are typical of the "main" r-process, we find very good agreementbetween the stellar Pb r-process abundances and those predicted by ourmodel. For stars with anomalously high Th/Eu ratios (the so-calledactinide boost), our observations demonstrate that any nucleosyntheticdeviations from the main r-process affect—at most—only theelements beyond the third r-process peak, namely Pb, Th, and U. Ourtheoretical calculations also indicate that possible r-process abundance"losses" by nuclear fission are negligible for isotopes along ther-process path between Pb and the long-lived radioactive isotopes of Thand U.

Calibration of Strömgren uvby-H? photometry for late-type stars - a model atmosphere approach
Context: The use of model atmospheres for deriving stellar fundamentalparameters, such as T_eff, log g, and [Fe/H], will increase as we findand explore extreme stellar populations where empirical calibrations arenot yet available. Moreover, calibrations for upcoming large satellitemissions of new spectrophotometric indices, similar to the uvby-H?system, will be needed. Aims: We aim to test the power oftheoretical calibrations based on a new generation of MARCS models bycomparisons with observational photomteric data. Methods: Wecalculated synthetic uvby-H? colour indices from synthetic spectra.A sample of 367 field stars, as well as stars in globular clusters, isused for a direct comparison of the synthetic indices versus empiricaldata and for scrutinizing the possibilities of theoretical calibrationsfor temperature, metallicity, and gravity. Results: We show thatthe temperature sensitivity of the synthetic (b-y) colour is very closeto its empirical counterpart, whereas the temperature scale based uponH? shows a slight offset. The theoretical metallicity sensitivityof the m1 index (and for G-type stars its combination withc_1) is somewhat higher than the empirical one, based upon spectroscopicdeterminations. The gravity sensitivity of the synthetic c1index shows satisfactory behaviour when compared to obervations of Fstars. For stars cooler than the sun, a deviation is significant in thec1-(b-y) diagram. The theoretical calibrations of (b-y),(v-y), and c1 seem to work well for Pop II stars and lead toeffective temperatures for globular cluster stars supporting recentclaims that atomic diffusion occurs in stars near the turnoff point ofNGC 6397. Conclusions: Synthetic colours of stellar atmospherescan indeed be used, in many cases, to derive reliable fundamentalstellar parameters. The deviations seen when compared to observationaldata could be due to incomplete linelists but are possibly also due tothe effects of assuming plane-parallell or spherical geometry and LTE.Model colours are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/498/527

Do the Nearby Blue Horizontal Branch Stars Belong to the Thick Disk or the Halo?
We study the Milky Way region (|Z|< 3.0 kpc) where the thickdisk and inner halo overlap by using the kinematics of local bluehorizontal branch (BHB) stars (within 1 kpc) and new samples of BHBstars and A-type stars from the Century Survey. We derive Galactic U, V,and W velocities for these BHB and A-type star samples using propermotions from the NOMAD catalog. The mean velocities and the velocitydispersions of the BHB samples (|Z| < 3 kpc) are characteristicof the halo, while those of the Century Survey A-type stars arecharacteristic of the thick disk. There is no evidence from our samplesthat the BHB stars rotate with the thick disk in the region |Z| <3 kpc. Nearly a third of the nearby local RR Lyrae stars have diskkinematics and are more metal rich than [Fe/H] ~ –1. Only a fewpercent of the Century Survey BHB (CBHB) stars have these properties.Only one nearby BHB star (HD 130201) is likely to be such a disk starbut selection based on high proper motions will have tended to excludesuch stars from the local sample. The scale height derived from a sampleof local RR Lyrae stars agrees with that of the CBHB stars. The localsamples of BHB stars and metal-weak red giants are too incomplete for asimilar comparison.

Chemical Inhomogeneities in the Milky Way Stellar Halo
We have compiled a sample of 699 stars from the recent literature withdetailed chemical abundance information (spanning –4.2lsim [Fe/H]lsim+0.3), and we compute their space velocities and Galactic orbitalparameters. We identify members of the inner and outer stellar halopopulations in our sample based only on their kinematic properties andthen compare the abundance ratios of these populations as a function of[Fe/H]. In the metallicity range where the two populations overlap(–2.5lsim [Fe/H] lsim–1.5), the mean [Mg/Fe] of the outerhalo is lower than the inner halo by –0.1 dex. For [Ni/Fe] and[Ba/Fe], the star-to-star abundance scatter of the inner halo isconsistently smaller than in the outer halo. The [Na/Fe], [Y/Fe],[Ca/Fe], and [Ti/Fe] ratios of both populations show similar means andlevels of scatter. Our inner halo population is chemically homogeneous,suggesting that a significant fraction of the Milky Way stellar halooriginated from a well-mixed interstellar medium. In contrast, our outerhalo population is chemically diverse, suggesting that anothersignificant fraction of the Milky Way stellar halo formed in remoteregions where chemical enrichment was dominated by local supernovaevents. We find no abundance trends with maximum radial distance fromthe Galactic center or maximum vertical distance from the Galactic disk.We also find no common kinematic signature for groups of metal-poorstars with peculiar abundance patters, such as the α-poor stars orstars showing unique neutron-capture enrichment patterns. Several starsand dwarf spheroidal systems with unique abundance patterns spend themajority of their time in the distant regions of the Milky Way stellarhalo, suggesting that the true outer halo of the Galaxy may have littleresemblance to the local stellar halo.

Neutron-Capture Elements in the Early Galaxy
The content of neutron-capture (trans-iron-peak) elements in thelow-metallicity Galactic halo varies widely from star to star. Thedifferences are both in bulk amount of the neutron-capture elements withrespect to lighter ones and in element-to-element ratios amongthemselves. Several well-defined abundance distributions have emergedthat reveal characteristic rapid and slow neutron-capturenucleosynthesis patterns. In this review we summarize these observedmetal-poor star's abundances, contrasting them with the Solar-systemvalues, comparing them to theoretical predictions, using them to assessthe types of stars responsible for their specific anomalies, andspeculating on the timing and nature of early Galactic nucleosynthesis.

Probing Atlas model atmospheres at high spectral resolution. Stellar synthesis and reference template validation
Aims. The fast improvement of spectroscopic observations makes mandatorya strong effort on the theoretical side to better reproduce the spectralenergy distribution (SED) of stars at high spectral resolution. In thisregard, relying on the Kurucz Atlas/Synthe original codes we computedthe Bluered library, consisting of 832 synthetic SED of stars, thatcover a large parameter space at very high spectral resolution (R = 500000) along the 3500-7000 Å wavelength range. Methods: Blueredsynthetic spectra have been used to assess in finer detail the intrinsicreliability and the performance limits of the Atlas theoreticalframework. The continuum-normalized spectra of theSun, Arcturus, andVega, plus a selected list of 45 bright stars withhigh-quality SEDs from the Prugniel & Soubiran Elodie catalog, formour sample designed to probe the global properties of synthetic spectraacross the entire range of H-R parameters. Results: Atlas modelsdisplay a better fitting performance with increasing stellartemperature. High-resolution spectra of Vega, the Sun, and Arcturus havebeen reproduced at R=100 000, respectively, within a 0.7%, 4.5%, and8.8% relative scatter in residual flux. In all the three cases, theresidual flux distribution shows a significant asymmetry (skewnessparameter γ = -2.21, -0.98, -0.67, respectively), which neatlyconfirms an overall “excess” of theoretical line blanketing.For the Sun, this apparent discrepancy is alleviated, but not recovered,by a systematic decrease (-40%) of the line oscillator strengths, log(gf), especially referring to iron transitions. Definitely, a straight“astrophysical” determination of log (gf) for eachindividual atomic transition has to be devised to overcome the problem.By neglecting overblanketing effects in theoretical models when fittinghigh-resolution continuum-normalized spectra of real stars, we lead to asystematically warmer effective temperature (between +80 and +300 K forthe solar fit) and a slightly poorer metal content.

Europium, Samarium, and Neodymium Isotopic Fractions in Metal-Poor Stars
We have derived isotopic fractions of europium, samarium, and neodymiumin two metal-poor giants with differing neutron-capture nucleosynthetichistories. These isotopic fractions were measured from newhigh-resolution (R~120,000), high signal-to-noise ratio (S/N ~ 160-1000)spectra obtained with the 2d-coudé spectrograph of McDonaldObservatory's 2.7 m Smith telescope. Synthetic spectra were generatedusing recent high-precision laboratory measurements of hyperfine andisotopic subcomponents of several transitions of these elements andmatched quantitatively to the observed spectra. We interpret ourisotopic fractions by the nucleosynthesis predictions of the stellarmodel, which reproduces s-process nucleosynthesis from the physicalconditions expected in low-mass, thermally pulsing stars on the AGB, andthe classical method, which approximates s-process nucleosynthesis by asteady neutron flux impinging on Fe-peak seed nuclei. Our Eu isotopicfraction in HD 175305 is consistent with an r-process origin by theclassical method and is consistent with either an r- or an s-processorigin by the stellar model. Our Sm isotopic fraction in HD 175305suggests a predominantly r-process origin, and our Sm isotopic fractionin HD 196944 is consistent with an s-process origin. The Nd isotopicfractions, while consistent with either r-process or s-process origins,have very little ability to distinguish between any physical values forthe isotopic fraction in either star. This study for the first timeextends the n-capture origin of multiple rare earths in metal-poor starsfrom elemental abundances to the isotopic level, strengthening ther-process interpretation for HD 175305 and the s-process interpretationfor HD 196944.

Rotation and Macroturbulence in Metal-Poor Field Red Giant and Red Horizontal Branch Stars
We report the results for rotational velocities, Vrot sin i,and macroturbulence dispersions, ζRT, for 12 metal-poorfield red giant branch (RGB) stars and 7 metal-poor field red horizontalbranch (RHB) stars. The results are based on Fourier transform analysesof absorption line profiles from high-resolution (R ≈ 120,000),high-S/N (≈215 per pixel; ≈345 per resolution element) spectraobtained with the Gecko spectrograph at the Canada-France-HawaiiTelescope (CFHT). The stars were selected from the authors' previousstudies of 20 RHB and 116 RGB stars, based primarily onlarger-than-average line-broadening values. We find thatζRT values for the metal-poor RGB stars are very similarto those for metal-rich disk giants studied earlier by Gray and hiscollaborators. Six of the RGB stars have small rotational values, lessthan 2.0 km s-1, while five show significantrotation/enhanced line broadening, over 3 km s-1. We confirmthe rapid rotation rate for RHB star HD 195636, found earlier byPreston. This star's rotation is comparable to that of the fastest knownrotating blue horizontal branch (BHB) stars, when allowance is made fordifferences in radii and moments of inertia. The other six RHB starshave somewhat lower rotation but show a trend to higher values at highertemperatures (lower radii). Comparing our results with those for BHBstars from Kinman et al., we find that the fraction of rapidly rotatingRHB stars is somewhat lower than is found among BHB stars. The number ofrapidly rotating RHB stars is also smaller than we would have expectedfrom the observed rotation of the RGB stars. We devise two empiricalmethods to translate our earlier line-broadening results intoVrot sin i for all the RGB and RHB stars they studied.Binning the RGB stars by luminosity, we find that most metal-poor fieldRGB stars show no detectable sign, on average, of rotation, which is notsurprising given the stars' large radii. However, the most luminousstars, with MV <= -1.5, do show net rotation, with meanvalues of 2-4 km s-1, depending on the algorithm employed,and also show signs of radial velocity jitter and mass loss. This"rotation" may in fact prove to be due to other line-broadening effects,such as shock waves or pulsation.Based on observations obtained at the Canada-France-Hawaii Telescope(CFHT) which is operated by the National Research Council of Canada, theInstitut National des Sciences de l'Univers of the Centre National de laRecherche Scientifique de France, and the University of Hawaii.

Vertical distribution of Galactic disk stars. IV. AMR and AVR from clump giants
We present the parameters of 891 stars, mostly clump giants, includingatmospheric parameters, distances, absolute magnitudes, spatialvelocities, galactic orbits and ages. One part of this sample consistsof local giants, within 100 pc, with atmospheric parameters eitherestimated from our spectroscopic observations at high resolution andhigh signal-to-noise ratio, or retrieved from the literature. The otherpart of the sample includes 523 distant stars, spanning distances up to1 kpc in the direction of the North Galactic Pole, for which we haveestimated atmospheric parameters from high resolution but lowsignal-to-noise Echelle spectra. This new sample is kinematicallyunbiased, with well-defined boundaries in magnitude and colours. Werevisit the basic properties of the Galactic thin disk as traced byclump giants. We find the metallicity distribution to be different fromthat of dwarfs, with fewer metal-rich stars. We find evidence for avertical metallicity gradient of -0.31 dex kpc-1 and for atransition at ~4-5 Gyr in both the metallicity and velocities. Theage-metallicity relation (AMR), which exhibits a very low dispersion,increases smoothly from 10 to 4 Gyr, with a steeper increase for youngerstars. The age-velocity relation (AVR) is characterized by thesaturation of the V and W dispersions at 5 Gyr, and continuous heatingin U.

Is the sky falling? Searching for stellar streams in the local Milky Way disc in the CORAVEL and RAVE surveys
We have searched for in-falling stellar streams on to the local MilkyWay disc in the CORrelation RAdial VELocities (CORAVEL) and RAdialVelocity Experiment (RAVE) surveys. The CORAVEL survey consists of localdwarf stars (Nördstrom et al. Geneva-Copenhagen survey) and localFamaey et al. giant stars. We select RAVE stars with radial velocitiesthat are sensitive to the Galactic vertical space velocity (Galacticlatitude b < -45°). Kuiper statistics have been employed to testthe symmetry of the Galactic vertical velocity distribution functions inthese samples for evidence of a net vertical flow that could beassociated with a (tidal?) stream of stars with vertically coherentkinematics. In contrast to the `Field of Streams' found in the outerhalo, we find that the local volumes of the solar neighbourhood sampledby the CORAVEL dwarfs (complete within ~3 ×10-4kpc3), CORAVEL giants (complete within ~5× 10-2kpc3) and RAVE (5-15 per cent completewithin ~8 kpc3) are devoid of any vertically coherent streamscontaining hundreds of stars. This is sufficiently sensitive to allowour RAVE sample to rule out the passing of the tidal stream of thedisrupting Sagittarius (Sgr) dwarf galaxy through the solarneighbourhood. This agrees with the most-recent determinations of itsorbit and dissociates it from the Helmi et al. halo stream. Ourconstraints on the absence of the Sgr stream near the Sun could prove auseful tool for discriminating between Galactic potential models. Thelack of a net vertical flow through the solar neighbourhood in theCORAVEL giants and RAVE samples argues against the Virgo overdensitycrossing the disc near the Sun. There are no vertical streams in theCORAVEL giants and RAVE samples with stellar densities >~1.6 ×104 and 1.5 × 103 stars kpc-3,respectively, and therefore no evidence for locally enhanced darkmatter.

Strömgren Photometry of Galactic Globular Clusters. I. New Calibrations of the Metallicity Index
We present a new calibration of the Strömgren metallicity indexm1 using red giant (RG) stars in four globular clusters (GCs:M92, M13, NGC 1851, 47 Tuc) with metallicity ranging from -2.2 to -0.7,marginally affected by reddening [E(B-V)<=0.04] and with accurate(u,v,b,y) photometry. The main difference between the newmetallicity-index-color (MIC) relations and similar relations availablein the literature is that we have adopted the u-y and v-y colors insteadof b-y. These colors present a stronger sensitivity to effectivetemperature, and the MIC relations show a linear slope. The differencebetween photometric estimates and spectroscopic measurements for RGs inM71, NGC 288, NGC 362, NGC 6397, and NGC 6752 is 0.04+/-0.03 dex(σ=0.11 dex). We also apply the new MIC relations to 85 field RGswith metallicity ranging from -2.4 to -0.5 and accurate reddeningestimates. We find that the difference between photometric estimates andspectroscopic measurements is -0.14+/-0.01 dex (σ=0.17 dex). Wealso provide two sets of MIC relations based on evolutionary models thathave been transformed into the observational plane by adopting eithersemiempirical or theoretical color-temperature relations. We apply thesemiempirical relations to the nine GCs and find that the differencebetween photometric and spectroscopic metallicities is 0.04+/-0.03 dex(σ=0.10 dex). A similar agreement is found for the sample of fieldRGs, with a difference of -0.09+/-0.03 dex (with σ=0.19 dex). Thedifference between metallicity estimates based on theoretical relationsand spectroscopic measurements is -0.11+/-0.03 dex (σ=0.14 dex)for the nine GCs and -0.24+/-0.03 dex (σ=0.15 dex) for the fieldRGs. Current evidence indicates that new MIC relations providemetallicities with an intrinsic accuracy better than 0.2 dex.Based in part on observations collected with the 1.54 m Danish Telescopeoperated at ESO (La Silla, Chile) and with the Nordic Optical Telescope(NOT) operated at La Palma (Spain).

Halo Star Streams in the Solar Neighborhood
We have assembled a sample of halo stars in the solar neighborhood tolook for halo substructure in velocity and angular momentum space. Oursample (231 stars) includes red giants, RR Lyrae variable stars, and redhorizontal branch stars within 2.5 kpc of the Sun with [Fe/H] less than-1.0. It was chosen to include stars with accurate distances, spacevelocities, and metallicities, as well as well-quantified errors. Withour data set, we confirm the existence of the streams found by Helmi andcoworkers, which we refer to as the H99 streams. These streams have adouble-peaked velocity distribution in the z-direction (out of theGalactic plane). We use the results of modeling of the H99 streams byHelmi and collaborators to test how one might use vz velocityinformation and radial velocity information to detect kinematicsubstructure in the halo. We find that detecting the H99 streams withradial velocities alone would require a large sample (e.g.,approximately 150 stars within 2 kpc of the Sun and within 20° ofthe Galactic poles). In addition, we use the velocity distribution ofthe H99 streams to estimate their age. From our model of the progenitorof the H99 streams, we determine that it was accreted between 6 and 9Gyr ago. The H99 streams have [α/Fe] abundances similar to otherhalo stars in the solar neighborhood, suggesting that the gas thatformed these stars were enriched mostly by Type II supernovae. We havealso discovered in angular momentum space two other possiblesubstructures, which we refer to as the retrograde and progradeoutliers. The retrograde outliers are likely to be halo substructure,but the prograde outliers are most likely part of the smooth halo. Theretrograde outliers have significant structure in the vφdirection and show a range of [α/Fe], with two having low[α/Fe] for their [Fe/H]. The fraction of substructure stars in oursample is between 5% and 7%. The methods presented in this paper can beused to exploit the kinematic information present in future largedatabases like RAVE, SDSS-II/SEGUE, and Gaia.

Hubble Space Telescope Observations of Chromospheres in Metal-Deficient Field Giants
Hubble Space Telescope high-resolution spectra of metal-deficient fieldgiants more than double the stars in previous studies, span ~3 mag onthe red giant branch, and sample an abundance range [Fe/H] = -1 to -3.These stars, in spite of their age and low metallicity, possesschromospheric fluxes of Mg II (λ2800) that are within a factor of4 of Population I stars, and they give signs of a dependence on themetal abundance at the lowest metallicities. The Mg II k line widthsdepend on luminosity and correlate with metallicity. Line profileasymmetries reveal outflows that occur at lower luminosities(MV = -0.8) than detected in Ca K and Hα lines inmetal-poor giants, suggesting mass outflow occurs over a larger span ofthe red giant branch than previously thought and confirming that the MgII lines are good wind diagnostics. These results do not support amagnetically dominated chromosphere, but they appear more consistentwith some sort of hydrodynamic or acoustic heating of the outeratmospheres.

Improved Laboratory Transition Probabilities for Hf II and Hafnium Abundances in the Sun and 10 Metal-poor Stars
Radiative lifetimes from laser-induced fluorescence measurements,accurate to ~+/-5%, are reported for 41 odd-parity levels of Hf II. Thelifetimes are combined with branching fractions measured using Fouriertransform spectrometry to determine transition probabilities for 150lines of Hf II. Approximately half of these new transition probabilitiesoverlap with recent independent measurements using a similar approach.The two sets of measurements are found to be in good agreement for linesin common. Our new laboratory data are applied to refine the hafniumphotospheric solar abundance and to determine hafnium abundances in 10metal-poor giant stars with enhanced r-process abundances. For the Sunwe derive logɛ(Hf)=0.88+/-0.08 from four lines; the uncertaintyis dominated by the weakness of the lines and their blending by otherspectral features. Within the uncertainties of our analysis, ther-process-rich stars possess constant Hf/La and Hf/Eu abundance ratios,logɛ(Hf/La)=-0.13+/-0.02(σ=0.06) andlogɛ(Hf/Eu)=+0.04+/-0.02 (σ=0.06). The observed averagestellar abundance ratio of Hf/Eu and La/Eu is larger than previousestimates of the solar system r-process-only value, suggesting asomewhat larger contribution from the r-process to the production of Hfand La. The newly determined Hf values could be employed as part of thechronometer pair, Th/Hf, to determine radioactive stellar ages.

Medium-resolution Isaac Newton Telescope library of empirical spectra - II. The stellar atmospheric parameters
We present a homogeneous set of stellar atmospheric parameters(Teff, logg, [Fe/H]) for MILES, a new spectral stellarlibrary covering the range λλ 3525-7500Å at2.3Å (FWHM) spectral resolution. The library consists of 985 starsspanning a large range in atmospheric parameters, from super-metal-rich,cool stars to hot, metal-poor stars. The spectral resolution, spectraltype coverage and number of stars represent a substantial improvementover previous libraries used in population synthesis models. Theatmospheric parameters that we present here are the result of aprevious, extensive compilation from the literature. In order toconstruct a homogeneous data set of atmospheric parameters we have takenthe sample of stars of Soubiran, Katz & Cayrel, which has very welldetermined fundamental parameters, as the standard reference system forour field stars, and have calibrated and bootstrapped the data fromother papers against it. The atmospheric parameters for our clusterstars have also been revised and updated according to recent metallicityscales, colour-temperature relations and improved set of isochrones.

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

Medium-resolution Isaac Newton Telescope library of empirical spectra
A new stellar library developed for stellar population synthesismodelling is presented. The library consists of 985 stars spanning alarge range in atmospheric parameters. The spectra were obtained at the2.5-m Isaac Newton Telescope and cover the range λλ3525-7500 Å at 2.3 Å (full width at half-maximum) spectralresolution. The spectral resolution, spectral-type coverage,flux-calibration accuracy and number of stars represent a substantialimprovement over previous libraries used in population-synthesis models.

Estimation of Carbon Abundances in Metal-Poor Stars. I. Application to the Strong G-Band Stars of Beers, Preston, and Shectman
We develop and test a method for the estimation of metallicities([Fe/H]) and carbon abundance ratios ([C/Fe]) for carbon-enhancedmetal-poor (CEMP) stars based on the application of artificial neuralnetworks, regressions, and synthesis models to medium-resolution (1-2Å) spectra and J-K colors. We calibrate this method by comparisonwith metallicities and carbon abundance determinations for 118 starswith available high-resolution analyses reported in the recentliterature. The neural network and regression approaches make use of apreviously defined set of line-strength indices quantifying the strengthof the Ca II K line and the CH G band, in conjunction with J-K colorsfrom the Two Micron All Sky Survey Point Source Catalog. The use ofnear-IR colors, as opposed to broadband B-V colors, is required becauseof the potentially large affect of strong molecular carbon bands onbluer color indices. We also explore the practicality of obtainingestimates of carbon abundances for metal-poor stars from the spectralinformation alone, i.e., without the additional information provided byphotometry, as many future samples of CEMP stars may lack such data. Wefind that although photometric information is required for theestimation of [Fe/H], it provides little improvement in our derivedestimates of [C/Fe], and hence, estimates of carbon-to-iron ratios basedsolely on line indices appear sufficiently accurate for most purposes.Although we find that the spectral synthesis approach yields the mostaccurate estimates of [C/Fe], in particular for the stars with thestrongest molecular bands, it is only marginally better than is obtainedfrom the line index approaches. Using these methods we are able toreproduce the previously measured [Fe/H] and [C/Fe] determinations withan accuracy of ~0.25 dex for stars in the metallicity interval-5.5<=[Fe/H]<=-1.0 and with 0.2<=(J-K)0<=0.8. Athigher metallicity, the Ca II K line begins to saturate, especially forthe cool stars in our program, and hence, this approach is not useful insome cases. As a first application, we estimate the abundances of [Fe/H]and [C/Fe] for the 56 stars identified as possibly carbon-rich, relativeto stars of similar metal abundance, in the sample of ``strong G-band''stars discussed by Beers, Preston, and Shectman.

The lithium content of the Galactic Halo stars
Thanks to the accurate determination of the baryon density of theuniverse by the recent cosmic microwave background experiments, updatedpredictions of the standard model of Big Bang nucleosynthesis now yieldthe initial abundance of the primordial light elements withunprecedented precision. In the case of ^7Li, the CMB+SBBN value issignificantly higher than the generally reported abundances for Pop IIstars along the so-called Spite plateau. In view of the crucialimportance of this disagreement, which has cosmological, galactic andstellar implications, we decided to tackle the most critical issues ofthe problem by revisiting a large sample of literature Li data in halostars that we assembled following some strict selection criteria on thequality of the original analyses. In the first part of the paper wefocus on the systematic uncertainties affecting the determination of theLi abundances, one of our main goal being to look for the "highestobservational accuracy achievable" for one of the largest sets of Liabundances ever assembled. We explore in great detail the temperaturescale issue with a special emphasis on reddening. We derive four sets ofeffective temperatures by applying the same colour {T}_eff calibrationbut making four different assumptions about reddening and determine theLTE lithium values for each of them. We compute the NLTE corrections andapply them to the LTE lithium abundances. We then focus on our "best"(i.e. most consistent) set of temperatures in order to discuss theinferred mean Li value and dispersion in several {T}_eff and metallicityintervals. The resulting mean Li values along the plateau for [Fe/H]≤ 1.5 are A(Li)_NLTE = 2.214±0.093 and 2.224±0.075when the lowest effective temperature considered is taken equal to 5700K and 6000 K respectively. This is a factor of 2.48 to 2.81 (dependingon the adopted SBBN model and on the effective temperature range chosento delimit the plateau) lower than the CMB+SBBN determination. We findno evidence of intrinsic dispersion. Assuming the correctness of theCMB+SBBN prediction, we are then left with the conclusion that the Liabundance along the plateau is not the pristine one, but that halo starshave undergone surface depletion during their evolution. In the secondpart of the paper we further dissect our sample in search of newconstraints on Li depletion in halo stars. By means of the Hipparcosparallaxes, we derive the evolutionary status of each of our samplestars, and re-discuss our derived Li abundances. A very surprisingresult emerges for the first time from this examination. Namely, themean Li value as well as the dispersion appear to be lower (althoughfully compatible within the errors) for the dwarfs than for the turnoffand subgiant stars. For our most homogeneous dwarfs-only sample with[Fe/H] ≤ 1.5, the mean Li abundances are A(L)_NLTE = 2.177±0.071 and 2.215±0.074 when the lowest effective temperatureconsidered is taken equal to 5700 K and 6000 K respectively. This is afactor of 2.52 to 3.06 (depending on the selected range in {T}_eff forthe plateau and on the SBBN predictions we compare to) lower than theCMB+SBBN primordial value. Instead, for the post-main sequence stars thecorresponding values are 2.260±0.1 and 2.235±0.077, whichcorrespond to a depletion factor of 2.28 to 2.52. These results,together with the finding that all the stars with Li abnormalities(strong deficiency or high content) lie on or originate from the hotside of the plateau, lead us to suggest that the most massive of thehalo stars have had a slightly different Li history than their lessmassive contemporaries. In turn, this puts strong new constraints on thepossible depletion mechanisms and reinforces Li as a stellartomographer.

Sulphur abundance in Galactic stars
We investigate sulphur abundance in 74 Galactic stars by using highresolution spectra obtained at ESO VLT and NTT telescopes. For the firsttime the abundances are derived, where possible, from three opticalmultiplets: Mult. 1, 6, and 8. By combining our own measurements withdata in the literature we assemble a sample of 253 stars in themetallicity range -3.2  [Fe/H]  +0.5. Two important features,which could hardly be detected in smaller samples, are obvious from thislarge sample: 1) a sizeable scatter in [S/Fe] ratios around [Fe/H]˜-1; 2) at low metallicities we observe stars with [S/Fe]˜ 0.4, aswell as stars with higher [S/Fe] ratios. The latter do not seem to bekinematically different from the former ones. Whether the latter findingstems from a distinct population of metal-poor stars or simply from anincreased scatter in sulphur abundances remains an open question.

Hubble Space Telescope Observations of Heavy Elements in Metal-Poor Galactic Halo Stars
We present new abundance determinations of neutron-capture elements Ge,Zr, Os, Ir, and Pt in a sample of 11 metal-poor(-3.1<=[Fe/H]<=-1.6) Galactic halo giant stars, based on HubbleSpace Telescope UV and Keck I optical high-resolution spectroscopy. Thestellar sample is dominated by r-process-rich stars such as thewell-studied CS 22892-052 and BD +17°3248 but also includes ther-process-poor, bright giant HD 122563. Our results demonstrate thatabundances of the third r-process peak elements Os, Ir, and Pt in thesemetal-poor halo stars are very well correlated among themselves and withthe abundances of the canonical r-process element Eu (determined inother studies), thus arguing for a common origin or site for r-processnucleosynthesis of heavier (Z>56) elements. However, the large (andcorrelated) scatters of [Eu, Os, Ir, Pt/Fe] suggest that the heaviestneutron-capture r-process elements are not formed in all supernovae. Incontrast, the Ge abundances of all program stars track their Feabundances, very well. An explosive process on iron peak nuclei (e.g.,the α-rich freezeout in supernovae), rather than neutron capture,appears to have been the dominant synthesis mechanism for this elementat low metallicities: Ge abundances seem completely uncorrelated withEu. The correlation (with very small scatter) of Ge and Fe abundancessuggests that Ge must have been produced rather commonly in stars, evenat early times in the Galaxy, over a wide range of metallicity. The Zrabundances show much the same behavior as Ge with (perhaps) somewhatmore scatter, suggesting some variations in abundance with respect toFe. The Zr abundances also do not vary cleanly with Eu abundances,indicating a synthesis origin different than that of heavierneutron-capture elements. Detailed abundance distributions for CS22892-052 and BD +17°3248, combining the new elementaldeterminations for Os-Pt and recently published Nd and Ho measurements,show excellent agreement with the solar system r-process curve from theelements Ba to Pb. The lighter n-capture elements, including Ge, ingeneral fall below the same solar system r-process curve that matchesthe heavier elements.

A Catalog of Northern Stars with Annual Proper Motions Larger than 0.15" (LSPM-NORTH Catalog)
The LSPM catalog is a comprehensive list of 61,977 stars north of theJ2000 celestial equator that have proper motions larger than 0.15"yr-1 (local-background-stars frame). The catalog has beengenerated primarily as a result of our systematic search for high propermotion stars in the Digitized Sky Surveys using our SUPERBLINK software.At brighter magnitudes, the catalog incorporates stars and data from theTycho-2 Catalogue and also, to a lesser extent, from the All-SkyCompiled Catalogue of 2.5 million stars. The LSPM catalog considerablyexpands over the old Luyten (Luyten Half-Second [LHS] and New LuytenTwo-Tenths [NLTT]) catalogs, superseding them for northern declinations.Positions are given with an accuracy of <~100 mas at the 2000.0epoch, and absolute proper motions are given with an accuracy of ~8 masyr-1. Corrections to the local-background-stars propermotions have been calculated, and absolute proper motions in theextragalactic frame are given. Whenever available, we also give opticalBT and VT magnitudes (from Tycho-2, ASCC-2.5),photographic BJ, RF, and IN magnitudes(from USNO-B1 catalog), and infrared J, H, and Ks magnitudes(from 2MASS). We also provide an estimated V magnitude and V-J color fornearly all catalog entries, useful for initial classification of thestars. The catalog is estimated to be over 99% complete at high Galacticlatitudes (|b|>15deg) and over 90% complete at lowGalactic latitudes (|b|>15deg), down to a magnitudeV=19.0, and has a limiting magnitude V=21.0. All the northern starslisted in the LHS and NLTT catalogs have been reidentified, and theirpositions, proper motions, and magnitudes reevaluated. The catalog alsolists a large number of completely new objects, which promise to expandvery significantly the census of red dwarfs, subdwarfs, and white dwarfsin the vicinity of the Sun.Based on data mining of the Digitized Sky Surveys (DSSs), developed andoperated by the Catalogs and Surveys Branch of the Space TelescopeScience Institute (STScI), Baltimore.Developed with support from the National Science Foundation (NSF), aspart of the NASA/NSF NStars program.

Kinematics of RHB stars to trace the structure of the Galaxy
Red horizontal-branch (RHB) stars have been selected from the Hipparcoscatalogue to investigate their kinematics and spatial distribution.Hipparcos parallaxes, literature radial velocities and Hipparcos propermotions, together with models for the gravitational potential of theMilky Way allow a calculation of the actual velocity vectors and theorbits of the RHB stars. The velocity characteristics are used to definea halo population sample (HPS) in the collection of RHBs. The orbitslead statistically to an overall z-distance probability distribution,showing that the RHBs exhibit two populations, a disk one having a scaleheight of hdisk ≃ 0.6 kpc and a halo one of ≃4kpc. We have investigated the influence on our results of parallaxaccuracy and of a demarcation line in the HRD between the RHB and thered-giant (RG) star region. Neither of them show marked effects. We haveperformed the orbit analysis using the potential model of Allen &Santillan as well as of Dehnen & Binney. The results differ onlyslightly for the disk population, showing that these potential modelsare not a critical part of such orbit investigations. RHB scale heightvalues are smaller than those found earlier for sdB stars, most likelybecause the samples of stars used had different spatial distributions apriori. The data do not allow us to specify a trend in the kinematicbehaviour of star types along the horizontal branch.

Stellar Chemical Signatures and Hierarchical Galaxy Formation
To compare the chemistries of stars in the Milky Way dwarf spheroidal(dSph) satellite galaxies with stars in the Galaxy, we have compiled alarge sample of Galactic stellar abundances from the literature. Whenkinematic information is available, we have assigned the stars tostandard Galactic components through Bayesian classification based onGaussian velocity ellipsoids. As found in previous studies, the[α/Fe] ratios of most stars in the dSph galaxies are generallylower than similar metallicity Galactic stars in this extended sample.Our kinematically selected stars confirm this for the Galactic halo,thin-disk, and thick-disk components. There is marginal overlap in thelow [α/Fe] ratios between dSph stars and Galactic halo stars onextreme retrograde orbits (V<-420 km s-1), but this is notsupported by other element ratios. Other element ratios compared in thispaper include r- and s-process abundances, where we find a significantoffset in the [Y/Fe] ratios, which results in a large overabundance in[Ba/Y] in most dSph stars compared with Galactic stars. Thus, thechemical signatures of most of the dSph stars are distinct from thestars in each of the kinematic components of the Galaxy. This resultrules out continuous merging of low-mass galaxies similar to these dSphsatellites during the formation of the Galaxy. However, we do not ruleout very early merging of low-mass dwarf galaxies, since up to one-halfof the most metal-poor stars ([Fe/H]<=-1.8) have chemistries that arein fair agreement with Galactic halo stars. We also do not rule outmerging with higher mass galaxies, although we note that the LMC and theremnants of the Sgr dwarf galaxy are also chemically distinct from themajority of the Galactic halo stars. Formation of the Galaxy's thickdisk by heating of an old thin disk during a merger is also not ruledout; however, the Galaxy's thick disk itself cannot be comprised of theremnants from a low-mass (dSph) dwarf galaxy, nor of a high-mass dwarfgalaxy like the LMC or Sgr, because of differences in chemistry.The new and independent environments offered by the dSph galaxies alsoallow us to examine fundamental assumptions related to thenucleosynthesis of the elements. The metal-poor stars ([Fe/H]<=-1.8)in the dSph galaxies appear to have lower [Ca/Fe] and [Ti/Fe] than[Mg/Fe] ratios, unlike similar metallicity stars in the Galaxy.Predictions from the α-process (α-rich freeze-out) would beconsistent with this result if there have been a lack of hypernovae indSph galaxies. The α-process could also be responsible for thevery low Y abundances in the metal-poor stars in dSph's; since [La/Eu](and possibly [Ba/Eu]) are consistent with pure r-process results, thelow [Y/Eu] suggests a separate r-process site for this light(first-peak) r-process element. We also discuss SNe II rates and yieldsas other alternatives, however. In stars with higher metallicities([Fe/H]>=-1.8), contributions from the s-process are expected; [(Y,La, and Ba)/Eu] all rise as expected, and yet [Ba/Y] is still muchhigher in the dSph stars than similar metallicity Galactic stars. Thisresult is consistent with s-process contributions from lower metallicityAGB stars in dSph galaxies, and is in good agreement with the slowerchemical evolution expected in the low-mass dSph galaxies relative tothe Galaxy, such that the build-up of metals occurs over much longertimescales. Future investigations of nucleosynthetic constraints (aswell as galaxy formation and evolution) will require an examination ofmany stars within individual dwarf galaxies.Finally, the Na-Ni trend reported in 1997 by Nissen & Schuster isconfirmed in Galactic halo stars, but we discuss this in terms of thegeneral nucleosynthesis of neutron-rich elements. We do not confirm thatthe Na-Ni trend is related to the accretion of dSph galaxies in theGalactic halo.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Drache
Right ascension:18h47m06.44s
Declination:+74°43'31.5"
Apparent magnitude:7.199
Distance:161.812 parsecs
Proper motion RA:319.7
Proper motion Dec:79.1
B-T magnitude:8.109
V-T magnitude:7.275

Catalogs and designations:
Proper Names
HD 1989HD 175305
TYCHO-2 2000TYC 4442-1776-1
USNO-A2.0USNO-A2 1575-04035462
HIPHIP 92167

→ Request more catalogs and designations from VizieR