Home     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Astro Photo     The Collection     Forum     Blog New!     FAQ     Login  
→ Adopt this star  

HD 191089


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

The nature of mid-infrared excesses from hot dust around Sun-like stars
Aims. Studies of the debris disk phenomenon have shown that most systemsare analogous to the Edgeworth-Kuiper Belt (EKB). However a rare subsetof sun-like stars possess dust which lies, in contrast, in theterrestrial planet region. In this study we aim to determine how manysources with apparent mid-infrared excess are truly hosts of warm dust,and investigate where the dust in these systems must lie. Methods: Weobserved using ground-based mid-infrared imaging with TIMMI2, VISIR andMICHELLE a sample of FGK main sequence stars previously reported to havehot dust. A new modelling approach was developed to determine theconstraints that can be set on the radial extent of excess emission insuch observations by demonstrating how the detectability of a disk of agiven flux as a fraction of the total flux from the system(F{disk}/F{total}) depends primarily on the ratioof disk radius to PSF width and on the uncertainty on that PSF width. Results: We confirm the presence of warm dust around three of thecandidates; η Corvi, HD 145263 and HD 202406. For η Corvimodelling constrains the dust to lie in regions smaller than 3.5 AU.The modelling constrains the dust to regions smaller than 80-100 AU forHD 145263 and HD 202406, with SED fitting suggesting the dust lies at afew tens of AU. Of two alternative models for the η Corvi excessemission, we find that a model with one hot dust component at less than0.164 arcsec (<3 AU) (combined with the known submm dust populationat 150 AU) fits all the data better at the 2.6σ level than analternative model with two populations of dust emitting in themid-infrared: hot dust at less than 0.19 arcsec (<3.5 AU) and amid-temperature component at 0.66 arcsec (12 AU). We identify severalsystems which have a companion (HD 65277 and HD 79873) or backgroundobject (HD 53246, HD 123356 and HD 128400) responsible for theirmid-infrared excess, and for three other systems we were able to ruleout a point-like mid-infrared source near the star at the level ofexcess observed in lower resolution observations (HD 12039, HD 69830 andHD 191089). Conclusions: Hot dust sources are either young and possiblyprimordial or transitional in their emission, or have relatively smallradius steady-state planetesimal belts, or they are old and luminouswith transient emission. High resolution imaging can be used toconstrain the location of the disk and help to discriminate betweendifferent models of disk emission. For some small disks, interferometryis needed to resolve the disk location.

The Complete Census of 70 μm-bright Debris Disks within ``the Formation and Evolution of Planetary Systems'' Spitzer Legacy Survey of Sun-like Stars
We report detection of cool dust surrounding solar-type stars fromobservations performed as part of the Spitzer Legacy Science ProgramFEPS. From a sample of 328 stars having ages ~0.003-3 Gyr we haveselected sources with 70 μm flux densities indicating excess in theirSEDs above expected photospheric emission. Six strong excess sources arelikely primordial circumstellar disks, remnants of the star formationprocess. Another 25 sources having >=3 σ excesses areassociated with dusty debris disks, generated by collisions withinplanetesimal belts that are possibly stirred by existing planets. Sixadditional sources with >=2 σ excesses require confirmation asdebris disks. In our analysis, most (>80%) 70 μm excess sourceshave >=3 σ excesses at 33 μm as well, while only a minority(<40%) have >=3 σ excesses at 24 μm. The rising SEDstoward (and perhaps beyond) 70 μm imply dust temperatures <45-85 Kfor debris in equilibrium with the stellar radiation field. From fittedsingle-temperature blackbody models we infer bulk dust properties suchas characteristic temperature, location, fractional luminosity, andmass. For >1/3 of the debris sources we find that multipletemperature components are suggested, implying a dust distributionextending over many tens of AU. Because the disks are dominated bycollisional processes, the parent body (planetesimal) belts may beextended as well. Preliminary assessment of the statistics of colddebris around Sun-like stars shows that ~10% of FEPS targets with massesbetween 0.6 and 1.8 Msolar and ages between 30 Myr and 3 Gyrexhibit excess 70 μm emission. We find that fractional excessamplitudes appear higher for younger stars and that there may be a trendin 70 μm excess frequency with stellar mass.

The total number of giant planets in debris discs with central clearings
Infrared spectra from the Spitzer Space Telescope (SSC) of many debrisdiscs are well fit with a single blackbody temperature which suggestclearings within the disc. We assume that clearings are caused byorbital instability in multiple planet systems with similarconfigurations to our own. These planets remove dust-generatingplanetesimal belts as well as dust generated by the outer disc that isscattered or drifts into the clearing. From numerical integrations, weestimate a minimum planet spacing required for orbital instability (andso planetesimal and dust removal) as a function of system age and planetmass. We estimate that a 108 yr old debris disc with a dustdisc edge at a radius of 50 au hosted by an A star must containapproximately five Neptune mass planets between the clearing radius andthe iceline in order to remove all primordial objects within it. Weinfer that known debris disc systems contain at least a fifth of aJupiter mass in massive planets. The number of planets and spacingrequired is insensitive to the assumed planet mass. However, an order ofmagnitude higher total mass in planets could reside in these systems ifthe planets are more massive.

The Formation and Evolution of Planetary Systems: Placing Our Solar System in Context with Spitzer
We provide an overview of the Spitzer Legacy Program, Formation andEvolution of Planetary Systems, that was proposed in 2000, begun in2001, and executed aboard the Spitzer Space Telescope between 2003 and2006. This program exploits the sensitivity of Spitzer to carry outmid-infrared spectrophotometric observations of solar-type stars. With asample of ~328 stars ranging in age from ~3 Myr to ~3 Gyr, we trace theevolution of circumstellar gas and dust from primordial planet-buildingstages in young circumstellar disks through to older collisionallygenerated debris disks. When completed, our program will help define thetimescales over which terrestrial and gas giant planets are built,constrain the frequency of planetesimal collisions as a function oftime, and establish the diversity of mature planetary architectures. Inaddition to the observational program, we have coordinated a concomitanttheoretical effort aimed at understanding the dynamics of circumstellardust with and without the effects of embedded planets, dust spectralenergy distributions, and atomic and molecular gas line emission.Together with the observations, these efforts will provide anastronomical context for understanding whether our solar system-and itshabitable planet-is a common or a rare circumstance. Additionalinformation about the FEPS project can be found on the team Web site.

Discovery of an 86 AU Radius Debris Ring around HD 181327
HST NICMOS PSF-subtracted coronagraphic observations of HD 181327 haverevealed the presence of a ringlike disk of circumstellar debris seen in1.1 μm light scattered by the disk grains, surrounded by a diffuseouter region of lower surface brightness. The annular disk appears to beinclined by 31.7d+/-1.6d from face-on, with the disk major-axis P.A. at107deg+/-2deg. The total 1.1 μm flux density ofthe light scattered by the disk (at 1.2"

Spitzer IRS Spectroscopy of IRAS-discovered Debris Disks
We have obtained Spitzer Space Telescope Infrared Spectrograph (IRS)5.5-35 μm spectra of 59 main-sequence stars that possess IRAS 60μm excess. The spectra of five objects possess spectral features thatare well-modeled using micron-sized grains and silicates withcrystalline mass fractions 0%-80%, consistent with T Tauri and HerbigAeBe stars. With the exception of η Crv, these objects are youngwith ages <=50 Myr. Our fits require the presence of a cool blackbodycontinuum, Tgr=80-200 K, in addition to hot, amorphous, andcrystalline silicates, Tgr=290-600 K, suggesting thatmultiple parent body belts are present in some debris disks, analogousto the asteroid and Kuiper belts in our solar system. The spectra forthe majority of objects are featureless, suggesting that the emittinggrains probably have radii a>10 μm. We have modeled the excesscontinua using a continuous disk with a uniform surface densitydistribution, expected if Poynting-Robertson and stellar wind drag arethe dominant grain removal processes, and using a single-temperatureblackbody, expected if the dust is located in a narrow ring around thestar. The IRS spectra of many objects are better modeled with asingle-temperature blackbody, suggesting that the disks possess innerholes. The distribution of grain temperatures, based on our blackbodyfits, peaks at Tgr=110-120 K. Since the timescale for icesublimation of micron-sized grains with Tgr>110 K is afraction of a Myr, the lack of warmer material may be explained if thegrains are icy. If planets dynamically clear the central portions ofdebris disks, then the frequency of planets around other stars isprobably high. We estimate that the majority of debris disk systemspossess parent body masses, MPB<1 M⊕. Thelow inferred parent body masses suggest that planet formation is anefficient process.Based on observations with the NASA Spitzer Space Telescope, which isoperated by the California Institute of Technology for NASA.

Nearby Debris Disk Systems with High Fractional Luminosity Reconsidered
By searching the IRAS and ISO databases, we compiled a list of 60 debrisdisks that exhibit the highest fractional luminosity values(fd>10-4) in the vicinity of the Sun (d<120pc). Eleven out of these 60 systems are new discoveries. Special carewas taken to exclude bogus disks from the sample. We computed thefractional luminosity values using available IRAS, ISO, and Spitzer dataand analyzed the Galactic space velocities of the objects. The resultsrevealed that stars with disks of high fractional luminosity oftenbelong to young stellar kinematic groups, providing an opportunity toobtain improved age estimates for these systems. We found thatpractically all disks with fd>5×10-4 areyounger than 100 Myr. The distribution of the disks in the fractionalluminosity versus age diagram indicates that (1) the number of oldsystems with high fd is lower than was claimed before, (2)there exist many relatively young disks of moderate fractionalluminosity, and (3) comparing the observations with a currenttheoretical model of debris disk evolution, a general good agreementcould be found.

Effective temperature scale and bolometric corrections from 2MASS photometry
We present a method to determine effective temperatures, angularsemi-diameters and bolometric corrections for population I and II FGKtype stars based on V and 2MASS IR photometry. Accurate calibration isaccomplished by using a sample of solar analogues, whose averagetemperature is assumed to be equal to the solar effective temperature of5777 K. By taking into account all possible sources of error we estimateassociated uncertainties to better than 1% in effective temperature andin the range 1.0-2.5% in angular semi-diameter for unreddened stars.Comparison of our new temperatures with other determinations extractedfrom the literature indicates, in general, remarkably good agreement.These results suggest that the effective temperaure scale of FGK starsis currently established with an accuracy better than 0.5%-1%. Theapplication of the method to a sample of 10 999 dwarfs in the Hipparcoscatalogue allows us to define temperature and bolometric correction (Kband) calibrations as a function of (V-K), [m/H] and log g. Bolometriccorrections in the V and K bands as a function of T_eff, [m/H] and log gare also given. We provide effective temperatures, angularsemi-diameters, radii and bolometric corrections in the V and K bandsfor the 10 999 FGK stars in our sample with the correspondinguncertainties.

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

CO emission from discs around isolated HAeBe and Vega-excess stars
We describe results from a survey for J = 3-2 12CO emissionfrom visible stars classified as having an infrared excess. The line isclearly detected in 21 objects, and significant molecular gas(>=10-3 Jupiter masses) is found to be common in targetswith infrared excesses >=0.01 (>=56 per cent of objects), but rarefor those with smaller excesses (~10 per cent of objects).A simple geometrical argument based on the infrared excess implies thatdisc opening angles are typically >=12° for objects with detectedCO; within this angle, the disc is optically thick to stellar radiationand shields the CO from photodissociation. Two or three CO discs have anunusually low infrared excess (<=0.01), implying the shielding discis physically very thin (<=1°).Around 50 per cent of the detected line profiles are double-peaked,while many of the rest have significantly broadened lines, attributed todiscs in Keplerian rotation. Simple model fits to the line profilesindicate outer radii in the range 30-300 au, larger than found throughfitting continuum SEDs, but similar to the sizes of debris discs aroundmain-sequence stars. As many as five have outer radii smaller than theSolar System (50 au), with a further four showing evidence of gas in thedisc at radii smaller than 20 au. The outer disc radius is independentof the stellar spectral type (from K through to B9), but there isevidence of a correlation between radius and total dust mass. Also themean disc size appears to decrease with time: discs around stars of age3-7 Myr have a mean radius ~210 au, whereas discs of age 7-20 Myr are afactor of three smaller. This shows that a significant mass of gas (atleast 2 M⊕) exists beyond the region of planetformation for up to ~7 Myr, and may remain for a further ~10Myr withinthis region.The only bona fide debris disc with detected CO is HD9672; this shows adouble-peaked CO profile and is the most compact gas disc observed, witha modelled outer radius of 17 au. In the case of HD141569, detailedmodelling of the line profile indicates gas may lie in two rings, withradii of 90 and 250 au, similar to the dust structure seen in scatteredlight and the mid-infrared. In both AB Aur and HD163296 we also findthat the sizes of the molecular disc and the dust scattering disc aresimilar; this suggests that the molecular gas and small dust grains areclosely co-located.

Evolution of Cold Circumstellar Dust around Solar-type Stars
We present submillimeter (Caltech Submillimeter Observatory 350 μm)and millimeter (Swedish-ESO Submillimetre Telescope [SEST] 1.2 mm, OwensValley Radio Observatory [OVRO] 3 mm) photometry for 127 solar-typestars from the Formation and Evolution of Planetary Systems SpitzerLegacy program that have masses between ~0.5 and 2.0 Msolarand ages from ~3 Myr to 3 Gyr. Continuum emission was detected towardfour stars with a signal-to-noise ratio>=3: the classical T Tauristars RX J1842.9-3532, RX J1852.3-3700, and PDS 66 with SEST, and thedebris-disk system HD 107146 with OVRO. RX J1842.9-3532 and RXJ1852.3-3700 are located in projection near the R CrA molecular cloud,with estimated ages of ~10 Myr (Neuhäuser et al.), whereas PDS 66is a probable member of the ~20 Myr old Lower Centaurus-Crux subgroup ofthe Scorpius-Centaurus OB association (Mamajek et al.). The continuumemission toward these three sources is unresolved at the 24" SESTresolution and likely originates from circumstellar accretion disks,each with estimated dust masses of ~5×10-5Msolar. Analysis of the visibility data toward HD 107146(age~80-200 Myr) indicates that the 3 mm continuum emission is centeredon the star within the astrometric uncertainties and resolved with aGaussian-fit FWHM size of (6.5"+/-1.4")×(4.2"+/-1.3"), or185AU×120 AU. The results from our continuum survey are combinedwith published observations to quantify the evolution of dust mass withtime by comparing the mass distributions for samples with differentstellar ages. The frequency distribution of circumstellar dust massesaround solar-type stars in the Taurus molecular cloud (age~2 Myr) isdistinguished from that around 3-10 Myr and 10-30 Myr old stars at asignificance level of ~1.5 and ~3 σ, respectively. These resultssuggest a decrease in the mass of dust contained in small dust grainsand/or changes in the grain properties by stellar ages of 10-30 Myr,consistent with previous conclusions. Further observations are needed todetermine if the evolution in the amount of cold dust occurs on evenshorter timescales.

Constraining the Lifetime of Circumstellar Disks in the Terrestrial Planet Zone: A Mid-Infrared Survey of the 30 Myr old Tucana-Horologium Association
We have conducted an N-band survey of 14 young stars in the ~30 Myr oldTucana-Horologium association to search for evidence of warm,circumstellar dust disks. Using the MIRAC-BLINC camera on the Magellan I(Baade) 6.5 m telescope, we find that none of the stars have astatistically significant N-band excess compared to the predictedstellar photospheric flux. Using three different sets of assumptions,this null result rules out the existence of the following around thesepost-T Tauri stars: (1) optically thick disks with inner hole radii of<~0.1 AU, (2) optically thin disks with masses of less than10-6 M⊕ (in ~1 μm sized grains) within<~10 AU of these stars, and (3) scaled-up analogs of the solar systemzodiacal dust cloud with more than 4000 times the emitting area. Oursurvey was sensitive to dust disks in the terrestrial planet zone withfractional luminosity oflog(Ldust/L*)~10-2.9, yet none werefound. Combined with results from previous surveys, these data suggestthat circumstellar dust disks become so optically thin as to beundetectable at N band before age ~20 Myr. We also present N-bandphotometry for several members of other young associations and asubsample of targets that will be observed with the Spitzer SpaceTelescope by the Formation and Evolution of Planetary Systems LegacyScience Program. Finally, we present an absolute calibration ofMIRAC-BLINC for four filters (L, N, 11.6, and Qs) on theCohen-Walker-Witteborn system.

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Dusty Debris Disks as Signposts of Planets: Implications for Spitzer Space Telescope
Submillimeter and near-infrared images of cool dusty debris disks andrings suggest the existence of unseen planets. At dusty but nonimagedstars, semimajor axes of associated planets can be estimated from thedust temperature. For some young stars these semimajor axes are greaterthan 1" as seen from Earth. Such stars are excellent targets forsensitive near-infrared imaging searches for warm planets. To probe thefull extent of the dust and hence of potential planetary orbits, Spitzerobservations should include measurements with the 160 μm filter.

Discovery of Reflection Nebulosity around Five Vega-like Stars
Coronagraphic optical observations of six Vega-like stars revealreflection nebulosities, five of which were previously unknown. Thenebulosities illuminated by HD 4881, HD 23362, HD 23680, HD 26676, andHD 49662 resemble that of the Pleiades, indicating an interstellarorigin for dust grains. The reflection nebulosity around HD 123160 has adouble-arm morphology, but no disklike feature is seen as close as 2.5"from the star in K-band adaptive optics data. We demonstrate that auniform density dust cloud surrounding HD 23362, HD 23680, and HD 123160can account for the observed 12-100 μm spectral energy distributions.For HD 4881, HD 26676, and HD 49662, an additional emission source, suchas from a circumstellar disk or nonequilibrium grain heating, isrequired to fit the 12-25 μm data. These results indicate that insome cases, particularly for Vega-like stars located beyond the LocalBubble (>100 pc), the dust responsible for excess thermal emissionmay originate from the interstellar medium rather than from a planetarydebris system.

Optical, infrared and millimetre-wave properties of Vega-like systems - IV. Observations of a new sample of candidate Vega-like sources
Photometric observations at optical and near-infrared wavelengths arepresented for members of a new sample of candidate Vega-like systems, ormain sequence stars with excess infrared emission due to circumstellardust. The observations are combined with IRAS fluxes to define thespectral energy distributions of the sources. Most of the sources showonly photospheric emission at near-IR wavelengths, indicating a lack ofhot (~1000K) dust. Mid-infrared spectra are presented for four sourcesfrom the sample. One of them, HD 150193, shows strong silicate emission,while another, HD 176363, was not detected. The spectra of two starsfrom our previous sample of Vega-like sources both show UIR-bandemission, attributed to hydrocarbon materials. Detailed comparisons ofthe optical and IRAS positions suggest that in some cases the IRASsource is not physically associated with the visible star. Alternativeassociations are suggested for several of these sources. Fractionalexcess luminosities are derived from the observed spectral energydistributions. The values found are comparable to those measuredpreviously for other Vega-like sources.

Candidate Main-Sequence Stars with Debris Disks: A New Sample of Vega-like Sources
Vega-like sources are main-sequence stars that exhibit IR fluxes inexcess of expectations for stellar photospheres, most likely due toreradiation of stellar emission intercepted by orbiting dust grains. Wehave identified a large sample of main-sequence stars with possibleexcess IR radiation by cross-correlating the Michigan Catalog ofTwo-dimensional Spectral Types for the HD Stars with the IRAS FaintSource Survey Catalog. Some 60 of these Vega-like sources were not foundduring previous surveys of the IRAS database, the majority of whichemployed the lower sensitivity Point Source Catalog. Here, we providedetails of our search strategy, together with a preliminary examinationof the full sample of Vega-like sources.

Dust Around Solar Mass Stars
The DEBRIS project is a search for infrared excess around Sun-like mainsequence stars, and other types of stellar targets, using the InfraredSpace Observatory. Some results, calibration issues, and changes to ouroriginal program are presented. Future platforms for advancing thisproject after the conclusion of the ISO mission are indicated.

SANTIAGO 91, a right ascension catalogue of 3387 stars (equinox J2000).
The positions in right ascension of 3387 stars belonging to the Santiago67 Catalogue, observed with the Repsold Meridian Circle at Cerro Calan,National Astronomical Observatory, during the period 1989 to 1994, aregiven. The average mean square error of a position, for the wholeCatalogue, is +/-0.009 s. The mean epoch of the catalogue is 1991.84.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Steinbock
Right ascension:20h09m05.22s
Declination:-26°13'26.5"
Apparent magnitude:7.19
Distance:53.505 parsecs
Proper motion RA:39.3
Proper motion Dec:-68.2
B-T magnitude:7.705
V-T magnitude:7.233

Catalogs and designations:
Proper Names
HD 1989HD 191089
TYCHO-2 2000TYC 6909-1892-1
USNO-A2.0USNO-A2 0600-42237882
HIPHIP 99273

→ Request more catalogs and designations from VizieR