Home     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Astro Photo     The Collection     Forum     Blog New!     FAQ     Login  
→ Adopt this star  

HD 65430


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

The frequency of planets in multiple systems
Context: The frequency of planets in binaries is an important issue inthe field of extrasolar planet studies, because of its relevance inestimating of the global planet population of our Galaxy and the cluesit can give to our understanding of planet formation and evolution.However, only preliminary estimates are available in the literature. Aims: We analyze and compare the frequency of planets in multiplesystems to the frequency of planets orbiting single stars. We also tryto highlight possible connections between the frequency of planets andthe orbital parameters of the binaries (such as the periastron and massratio.) Methods: A literature search was performed for binariesand multiple systems among the stars of the sample with uniform planetdetectability defined by Fischer & Valenti (2005, ApJ, 622, 1102),and 202 of the 850 stars of the sample turned out to be binaries,allowing a statistical comparison of the frequency of planets inbinaries and single stars and a study of the run of the planet frequencyas a function of the binary separation. Results: We found that theglobal frequency of planets in the binaries of the sample is notstatistically different from that of planets in single stars. Evenconservatively taking the probable incompleteness of binary detection inour sample into account, we estimate that the frequency of planets inbinaries can be no more than a factor of three lower than that ofplanets in single stars. There is no significant dependence of planetfrequency on the binary separation, except for a lower value offrequency for close binaries. However, this is probably not as low asrequired to explain the presence of planets in close binaries only asthe result of modifications of the binary orbit after the planetformation. Table 8 and Appendix A are only available in electronic form athttp://www.aanda.org

The Ca II infrared triplet as a stellar activity diagnostic. II. Test and calibration with high resolution observations
Aims.We report on our analysis of the high resolution spectra (R≈86000) of a sample of 42 late-type active stars (with measured{log{R'_HK}} spanning from ≈{ -}3 to ≈{ -}5) acquired with theItalian 3.6 m Telescopio Nazionale Galileo (TNG) using the SARGspectrometer in the 4960-10 110 Å range. The high quality of thespectra and the good activity-level coverage allow us to measure twodifferent chromospheric indicators that can be derived from the Ca iiinfrared triplet (Ca ii IRT) lines: the residual equivalent width (EQW)and the chromospheric indicator {R_IRT}. The aim of this work isdetermine and test the best way of deriving activity-level informationand errors from the Ca ii IRT lines, in preparation of the GAIACornerstone mission by ESA, by which the Ca ii IRT spectral range willbe spectroscopically observed for millions of stars. Methods: The{R_IRT} index is calculated for each observed star as the differencebetween the calculated NLTE photospheric central intensity and theobserved one. The residual EQW, {Δ W_IRT}, is calculated as thearea of the positive profile obtained as the difference between thecalculated NLTE photospheric and the observed profiles. We correlate{log{R'_HK}} with {R_IRT} and the {Δ W_IRT}. Results: Thisanalysis indicates that Ca ii IRT lines are good chromosphericdiagnostics. We find that both {Δ W_IRT} and the {R_IRT}quantities can be used as chromospheric indicators, although the formerexhibits a tighter correlation with the {log{R'_HK}} index. Furthermore,we find that the total chromospheric excess EQW in the Ca ii IRT isalmost linearly correlated with the excess in the Ca ii H & Kdoublet, as estimated through the {log{R'_HK}} index.Based on observations made with the Italian Telescopio Nazionale Galileo(TNG) operated on the island of La Palma by the Centro Galileo Galileiof the Consorzio Nazionale per l'Astronomia e l'Astrofisica at theSpanish Observatorio del Roque de los Muchachos of the Instituto deAstrofísica de Canarias. Table 4 is only available in electronicform at http://www.aanda.org

Effective temperature scale and bolometric corrections from 2MASS photometry
We present a method to determine effective temperatures, angularsemi-diameters and bolometric corrections for population I and II FGKtype stars based on V and 2MASS IR photometry. Accurate calibration isaccomplished by using a sample of solar analogues, whose averagetemperature is assumed to be equal to the solar effective temperature of5777 K. By taking into account all possible sources of error we estimateassociated uncertainties to better than 1% in effective temperature andin the range 1.0-2.5% in angular semi-diameter for unreddened stars.Comparison of our new temperatures with other determinations extractedfrom the literature indicates, in general, remarkably good agreement.These results suggest that the effective temperaure scale of FGK starsis currently established with an accuracy better than 0.5%-1%. Theapplication of the method to a sample of 10 999 dwarfs in the Hipparcoscatalogue allows us to define temperature and bolometric correction (Kband) calibrations as a function of (V-K), [m/H] and log g. Bolometriccorrections in the V and K bands as a function of T_eff, [m/H] and log gare also given. We provide effective temperatures, angularsemi-diameters, radii and bolometric corrections in the V and K bandsfor the 10 999 FGK stars in our sample with the correspondinguncertainties.

Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs
We present a uniform catalog of stellar properties for 1040 nearby F, G,and K stars that have been observed by the Keck, Lick, and AAT planetsearch programs. Fitting observed echelle spectra with synthetic spectrayielded effective temperature, surface gravity, metallicity, projectedrotational velocity, and abundances of the elements Na, Si, Ti, Fe, andNi, for every star in the catalog. Combining V-band photometry andHipparcos parallaxes with a bolometric correction based on thespectroscopic results yielded stellar luminosity, radius, and mass.Interpolating Yonsei-Yale isochrones to the luminosity, effectivetemperature, metallicity, and α-element enhancement of each staryielded a theoretical mass, radius, gravity, and age range for moststars in the catalog. Automated tools provide uniform results and makeanalysis of such a large sample practical. Our analysis method differsfrom traditional abundance analyses in that we fit the observed spectrumdirectly, rather than trying to match equivalent widths, and wedetermine effective temperature and surface gravity from the spectrumitself, rather than adopting values based on measured photometry orparallax. As part of our analysis, we determined a new relationshipbetween macroturbulence and effective temperature on the main sequence.Detailed error analysis revealed small systematic offsets with respectto the Sun and spurious abundance trends as a function of effectivetemperature that would be inobvious in smaller samples. We attempted toremove these errors by applying empirical corrections, achieving aprecision per spectrum of 44 K in effective temperature, 0.03 dex inmetallicity, 0.06 dex in the logarithm of gravity, and 0.5 kms-1 in projected rotational velocity. Comparisons withprevious studies show only small discrepancies. Our spectroscopicallydetermined masses have a median fractional precision of 15%, but theyare systematically 10% higher than masses obtained by interpolatingisochrones. Our spectroscopic radii have a median fractional precisionof 3%. Our ages from isochrones have a precision that variesdramatically with location in the Hertzsprung-Russell diagram. We planto extend the catalog by applying our automated analysis technique toother large stellar samples.

Statistical Constraints for Astrometric Binaries with Nonlinear Motion
Useful constraints on the orbits and mass ratios of astrometric binariesin the Hipparcos catalog are derived from the measured proper motiondifferences of Hipparcos and Tycho-2 (Δμ), accelerations ofproper motions (μ˙), and second derivatives of proper motions(μ̈). It is shown how, in some cases, statistical bounds can beestimated for the masses of the secondary components. Two catalogs ofastrometric binaries are generated, one of binaries with significantproper motion differences and the other of binaries with significantaccelerations of their proper motions. Mathematical relations betweenthe astrometric observables Δμ, μ˙, and μ̈ andthe orbital elements are derived in the appendices. We find a remarkabledifference between the distribution of spectral types of stars withlarge accelerations but small proper motion differences and that ofstars with large proper motion differences but insignificantaccelerations. The spectral type distribution for the former sample ofbinaries is the same as the general distribution of all stars in theHipparcos catalog, whereas the latter sample is clearly dominated bysolar-type stars, with an obvious dearth of blue stars. We point outthat the latter set includes mostly binaries with long periods (longerthan about 6 yr).

The Planet-Metallicity Correlation
We have recently carried out spectral synthesis modeling to determineTeff, logg, vsini, and [Fe/H] for 1040 FGK-type stars on theKeck, Lick, and Anglo-Australian Telescope planet search programs. Thisis the first time that a single, uniform spectroscopic analysis has beenmade for every star on a large Doppler planet search survey. We identifya subset of 850 stars that have Doppler observations sufficient todetect uniformly all planets with radial velocity semiamplitudes K>30m s-1 and orbital periods shorter than 4 yr. From this subsetof stars, we determine that fewer than 3% of stars with-0.5<[Fe/H]<0.0 have Doppler-detected planets. Above solarmetallicity, there is a smooth and rapid rise in the fraction of starswith planets. At [Fe/H]>+0.3 dex, 25% of observed stars have detectedgas giant planets. A power-law fit to these data relates the formationprobability for gas giant planets to the square of the number of metalatoms. High stellar metallicity also appears to be correlated with thepresence of multiple-planet systems and with the total detected planetmass. This data set was examined to better understand the origin of highmetallicity in stars with planets. None of the expected fossilsignatures of accretion are observed in stars with planets relative tothe general sample: (1) metallicity does not appear to increase as themass of the convective envelopes decreases, (2) subgiants with planetsdo not show dilution of metallicity, (3) no abundance variations for Na,Si, Ti, or Ni are found as a function of condensation temperature, and(4) no correlations between metallicity and orbital period oreccentricity could be identified. We conclude that stars with extrasolarplanets do not have an accretion signature that distinguishes them fromother stars; more likely, they are simply born in higher metallicitymolecular clouds.Based on observations obtained at Lick and Keck Observatories, operatedby the University of California, and the Anglo-Australian Observatories.

Do We Know of Any Maunder Minimum Stars?
Most stars previously identified as Maunder minimum stars are old andevolved off the main sequence. Analysis of activity measurements fromthe California and Carnegie Planet Search program stars and Hipparcosparallaxes implies that the canonical relation between age andchromospheric activity breaks down for stars older than ~6 Gyr whenactivity is calculated from Mount Wilson S-values. Stars only 1 magabove the main sequence exhibit significantly suppressed activitylevels, which have been mistaken for examples of Maunder minimumbehavior.Based on observations obtained at the W. M. Keck Observatory, which isoperated as a scientific partnership among the California Institute ofTechnology, the University of California, and the National Aeronauticsand Space Administration. The Keck Observatory was made possible by thegenerous financial support of the W. M. Keck Foundation.

Chromospheric Ca II Emission in Nearby F, G, K, and M Stars
We present chromospheric Ca II H and K activity measurements, rotationperiods, and ages for ~1200 F, G, K, and M type main-sequence stars from~18,000 archival spectra taken at Keck and Lick Observatories as a partof the California and Carnegie Planet Search Project. We have calibratedour chromospheric S-values against the Mount Wilson chromosphericactivity data. From these measurements we have calculated medianactivity levels and derived R'HK, stellar ages,and rotation periods from general parameterizations for 1228 stars,~1000 of which have no previously published S-values. We also presentprecise time series of activity measurements for these stars.Based on observations obtained at Lick Observatory, which is operated bythe University of California, and on observations obtained at the W. M.Keck Observatory, which is operated jointly by the University ofCalifornia and the California Institute of Technology. The KeckObservatory was made possible by the generous financial support of theW. M. Keck Foundation.

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Detection of double stars with the use of Kyiv database of lunar occultations
On the basis of 40-year series of observations of occultations of starsby the Moon from the Kyiv database, we found 83 stars which are likelyto be double ones. Additional components close to basic stars arerevealed for four known wide pair.

Nearby stars of the Galactic disk and halo. III.
High-resolution spectroscopic observations of about 150 nearby stars orstar systems are presented and discussed. The study of these and another100 objects of the previous papers of this series implies that theGalaxy became reality 13 or 14 Gyr ago with the implementation of amassive, rotationally-supported population of thick-disk stars. The veryhigh star formation rate in that phase gave rise to a rapid metalenrichment and an expulsion of gas in supernovae-driven Galactic winds,but was followed by a star formation gap for no less than three billionyears at the Sun's galactocentric distance. In a second phase, then, thethin disk - our ``familiar Milky Way'' - came on stage. Nowadays ittraces the bright side of the Galaxy, but it is also embedded in a hugecoffin of dead thick-disk stars that account for a large amount ofbaryonic dark matter. As opposed to this, cold-dark-matter-dominatedcosmologies that suggest a more gradual hierarchical buildup throughmergers of minor structures, though popular, are a poor description forthe Milky Way Galaxy - and by inference many other spirals as well - if,as the sample implies, the fossil records of its long-lived stars do notstick to this paradigm. Apart from this general picture that emergeswith reference to the entire sample stars, a good deal of the presentwork is however also concerned with detailed discussions of manyindividual objects. Among the most interesting we mention the bluestraggler or merger candidates HD 165401 and HD 137763/HD 137778, thelikely accretion of a giant planet or brown dwarf on 59 Vir in itsrecent history, and HD 63433 that proves to be a young solar analog at\tau˜200 Myr. Likewise, the secondary to HR 4867, formerly suspectednon-single from the Hipparcos astrometry, is directly detectable in thehigh-resolution spectroscopic tracings, whereas the visual binary \chiCet is instead at least triple, and presumably even quadruple. Withrespect to the nearby young stars a complete account of the Ursa MajorAssociation is presented, and we provide as well plain evidence foranother, the ``Hercules-Lyra Association'', the likely existence ofwhich was only realized in recent years. On account of its rotation,chemistry, and age we do confirm that the Sun is very typical among itsG-type neighbors; as to its kinematics, it appears however not unlikelythat the Sun's known low peculiar space velocity could indeed be thecause for the weak paleontological record of mass extinctions and majorimpact events on our parent planet during the most recent Galactic planepassage of the solar system. Although the significance of thiscorrelation certainly remains a matter of debate for years to come, wepoint in this context to the principal importance of the thick disk fora complete census with respect to the local surface and volumedensities. Other important effects that can be ascribed to this darkstellar population comprise (i) the observed plateau in the shape of theluminosity function of the local FGK stars, (ii) a small thoughsystematic effect on the basic solar motion, (iii) a reassessment of theterm ``asymmetrical drift velocity'' for the remainder (i.e. the thindisk) of the stellar objects, (iv) its ability to account for the bulkof the recently discovered high-velocity blue white dwarfs, (v) itsmajor contribution to the Sun's ˜220 km s-1 rotationalvelocity around the Galactic center, and (vi) the significant flatteningthat it imposes on the Milky Way's rotation curve. Finally we note ahigh multiplicity fraction in the small but volume-complete local sampleof stars of this ancient population. This in turn is highly suggestivefor a star formation scenario wherein the few existing single stellarobjects might only arise from either late mergers or the dynamicalejection of former triple or higher level star systems.

Contributions to the Nearby Stars (NStars) Project: Spectroscopy of Stars Earlier than M0 within 40 Parsecs: The Northern Sample. I.
We have embarked on a project, under the aegis of the Nearby Stars(NStars)/Space Interferometry Mission Preparatory Science Program, toobtain spectra, spectral types, and, where feasible, basic physicalparameters for the 3600 dwarf and giant stars earlier than M0 within 40pc of the Sun. In this paper, we report on the results of this projectfor the first 664 stars in the northern hemisphere. These resultsinclude precise, homogeneous spectral types, basic physical parameters(including the effective temperature, surface gravity, and overallmetallicity [M/H]), and measures of the chromospheric activity of ourprogram stars. Observed and derived data presented in this paper arealso available on the project's Web site.

High-Precision Near-Infrared Photometry of a Large Sample of Bright Stars Visible from the Northern Hemisphere
We present the results of 8 yr of infrared photometric monitoring of alarge sample of stars visible from Teide Observatory (Tenerife, CanaryIslands). The final archive is made up of 10,949 photometric measuresthrough a standard InSb single-channel photometer system, principally inJHK, although some stars have measures in L'. The core of this list ofstars is the standard-star list developed for the Carlos SánchezTelescope. A total of 298 stars have been observed on at least twooccasions on a system carefully linked to the zero point defined byVega. We present high-precision photometry for these stars. The medianuncertainty in magnitude for stars with a minimum of four observationsand thus reliable statistics ranges from 0.0038 mag in J to 0.0033 magin K. Many of these stars are faint enough to be observable with arraydetectors (42 are K>8) and thus to permit a linkage of the bright andfaint infrared photometric systems. We also present photometry of anadditional 25 stars for which the original measures are no longeravailable, plus photometry in L' and/or M of 36 stars from the mainlist. We calculate the mean infrared colors of main-sequence stars fromA0 V to K5 V and show that the locus of the H-K color is linearlycorrelated with J-H. The rms dispersion in the correlation between J-Hand H-K is 0.0073 mag. We use the relationship to interpolate colors forall subclasses from A0 V to K5 V. We find that K and M main-sequence andgiant stars can be separated on the color-color diagram withhigh-precision near-infrared photometry and thus that photometry canallow us to identify potential mistakes in luminosity classclassification.

Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog
We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.

K dwarfs and the chemical evolution of the solar cylinder
K dwarfs have lifetimes older than the present age of the Galactic disc,and are thus ideal stars for investigating the chemical evolution of thedisc. We have developed several photometric metallicity indicators for Kdwarfs, based on a sample of accurate spectroscopic metallicities for 34disc and halo G and K dwarfs. The photometric metallicities lead us todevelop a metallicity index for K dwarfs based only on their position inthe colour-absolute-magnitude diagram. Metallicities have beendetermined for 431 single K dwarfs drawn from the Hipparcos catalogue,selecting the stars by absolute magnitude and removing multiple systems.The sample is essentially a complete reckoning of the metal content innearby K dwarfs. We use stellar isochrones to mark the stars by mass,and select a subset of 220 of the stars, which is complete within anarrow mass interval. We fit the data with a model of the chemicalevolution of the solar cylinder. We find that only a modest cosmicscatter is required to fit our age-metallicity relation. The modelassumes two main infall episodes for the formation of the halo-thickdisc and thin disc, respectively. The new data confirm that the solarneighbourhood formed on a long time-scale of the order of 7 Gyr.

HIPPARCOS age-metallicity relation of the solar neighbourhood disc stars
We derive age-metallicity relations (AMRs) and orbital parameters forthe 1658 solar neighbourhood stars to which accurate distances aremeasured by the HIPPARCOS satellite. The sample stars comprise 1382 thindisc stars, 229 thick disc stars, and 47 halo stars according to theirorbital parameters. We find a considerable scatter for thin disc AMRalong the one-zone Galactic chemical evolution (GCE) model. Orbits andmetallicities of thin disc stars show now clear relation each other. Thescatter along the AMR exists even if the stars with the same orbits areselected. We examine simple extension of one-zone GCE models whichaccount for inhomogeneity in the effective yield and inhomogeneous starformation rate in the Galaxy. Both extensions of the one-zone GCE modelcannot account for the scatter in age - [Fe/H] - [Ca/Fe] relationsimultaneously. We conclude, therefore, that the scatter along the thindisc AMR is an essential feature in the formation and evolution of theGalaxy. The AMR for thick disc stars shows that the star formationterminated 8 Gyr ago in the thick disc. As already reported by Grattonet al. (\cite{Gratton_et.al.2000}) and Prochaska et al.(\cite{Prochaska_et.al.2000}), thick disc stars are more Ca-rich thanthin disc stars with the same [Fe/H]. We find that thick disc stars showa vertical abundance gradient. These three facts, the AMR, verticalgradient, and [Ca/Fe]-[Fe/H] relation, support monolithic collapseand/or accretion of satellite dwarf galaxies as likely thick discformation scenarios. Tables 2 and 3 are only available in electronicform at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)or via http:/ /cdsweb.u-strasbg.fr/ cgi-bin/qcat?J/ A+A/394/927

Radial Velocities for 889 Late-Type Stars
We report radial velocities for 844 FGKM-type main-sequence and subgiantstars and 45 K giants, most of which had either low-precision velocitymeasurements or none at all. These velocities differ from the standardstars of Udry et al. by 0.035 km s-1 (rms) for the 26 FGKstandard stars in common. The zero point of our velocities differs fromthat of Udry et al.: =+0.053km s-1. Thus, these new velocities agree with the best knownstandard stars both in precision and zero point, to well within 0.1 kms-1. Nonetheless, both these velocities and the standardssuffer from three sources of systematic error, namely, convectiveblueshift, gravitational redshift, and spectral type mismatch of thereference spectrum. These systematic errors are here forced to be zerofor G2 V stars by using the Sun as reference, with Vesta and day sky asproxies. But for spectral types departing from solar, the systematicerrors reach 0.3 km s-1 in the F and K stars and 0.4 kms-1 in M dwarfs. Multiple spectra were obtained for all 889stars during 4 years, and 782 of them exhibit velocity scatter less than0.1 km s-1. These stars may serve as radial velocitystandards if they remain constant in velocity. We found 11 newspectroscopic binaries and report orbital parameters for them. Based onobservations obtained at the W. M. Keck Observatory, which is operatedjointly by the University of California and the California Institute ofTechnology, and on observations obtained at the Lick Observatory, whichis operated by the University of California.

A Survey of Proper-Motion Stars. XVI. Orbital Solutions for 171 Single-lined Spectroscopic Binaries
We report 25,563 radial velocity measurements for 1359 single-linedstars in the Carney-Latham sample of 1464 stars selected for high propermotion. For 171 of these, we present spectroscopic orbital solutions. Wefind no obvious difference between the binary characteristics in thehalo and the disk populations. The observed frequency is the same, andthe period distributions are consistent with the hypothesis that the twosets of binaries were drawn from the same parent population. Thissuggests that metallicity in general, and radiative opacities inparticular, have little influence over the fragmentation process thatleads to short-period binaries. All the binaries with periods shorterthan 10 days have nearly circular orbits, while the binaries withperiods longer than 20 days exhibit a wide range of eccentricities and amedian value of 0.37. For the metal-poor high-velocity halo binaries inour sample, the transition from circular to eccentric orbits appears tooccur at about 20 days, supporting the conclusion that tidalcircularization on the main sequence is important for the oldestbinaries in the Galaxy. Some of the results presented here usedobservations made with the Multiple Mirror Telescope, a joint facilityof the Smithsonian Institution and the University of Arizona.

Revised Coordinates and Proper Motions of the Stars in the Luyten Half-Second Catalog
We present refined coordinates and proper-motion data for the highproper-motion (HPM) stars in the Luyten Half-Second (LHS) catalog. Thepositional uncertainty in the original Luyten catalog is typicallygreater than 10" and is often greater than 30". We have used the digitalscans of the POSS I and POSS II plates to derive more accurate positionsand proper motions of the objects. Out of the 4470 candidates in the LHScatalog, 4323 objects were manually reidentified in the POSS I and POSSII scans. A small fraction of the stars were not found because of thelack of finder charts and digitized POSS II scans. The uncertainties inthe revised positions are typically ~2" but can be as high as ~8" in afew cases, which is a large improvement over the original data.Cross-correlation with the Tycho-2 and Hipparcos catalogs yielded 819candidates (with mR<~12). For these brighter sources, theposition and proper-motion data were replaced with the more accurateTycho-2/Hipparcos data. In total, we have revised proper-motionmeasurements and coordinates for 4040 stars and revised coordinates for4330 stars. The electronic version of the paper5 contains the updated information on all 4470stars in the LHS catalog.

A revision of the solar neighbourhood metallicity distribution
We present a revised metallicity distribution of dwarfs in the solarneighbourhood. This distribution is centred on solar metallicity. Weshow that previous metallicity distributions, selected on the basis ofspectral type, are biased against stars with solar metallicity orhigher. A selection of G-dwarf stars is inherently biased againstmetal-rich stars and is not representative of the solar neighbourhoodmetallicity distribution. Using a sample selected on colour, we obtain adistribution where approximately half the stars in the solarneighbourhood have metallicities higher than [Fe/H]=0. The percentage ofmid-metal-poor stars ([Fe/H]<-0.5) is approximately 4 per cent, inagreement with present estimates of the thick disc. In order to have ametallicity distribution comparable to chemical evolution modelpredictions, we convert the star fraction to mass fraction, and showthat another bias against metal-rich stars affects dwarf metallicitydistributions, due to the colour (or spectral type) limits of thesamples. Reconsidering the corrections resulting from the increasingthickness of the stellar disc with age, we show that the simpleclosed-box model with no instantaneous recycling approximation gives areasonable fit to the observed distribution. Comparisons with theage-metallicity relation and abundance ratios suggest that the simpleclosed-box model may be a viable model of the chemical evolution of theGalaxy at solar radius.

The Vienna-KPNO search for Doppler-imaging candidate stars. I. A catalog of stellar-activity indicators for 1058 late-type Hipparcos stars
We present the results from a spectroscopic Ca ii H&K survey of 1058late-type stars selected from a color-limited subsample of the Hipparcoscatalog. Out of these 1058 stars, 371 stars were found to showsignificant H&K emission, most of them previously unknown; 23% withstrong emission, 36% with moderate emission, and 41% with weak emission.These spectra are used to determine absolute H&K emission-linefluxes, radial velocities, and equivalent widths of theluminosity-sensitive Sr ii line at 4077 Ä. Red-wavelengthspectroscopic and Strömgren y photometric follow-up observations ofthe 371 stars with H&K emission are used to additionally determinethe absolute Hα -core flux, the lithium abundance from the Li i6708 Å equivalent width, the rotational velocity vsin i, theradial velocity, and the light variations and its periodicity. Thelatter is interpreted as the stellar rotation period due to aninhomogeneous surface brightness distribution. 156 stars were found withphotometric periods between 0.29 and 64 days, 11 additional systemsshowed quasi-periodic variations possibly in excess of ~50 days. Further54 stars had variations but no unique period was found, and four starswere essentially constant. Altogether, 170 new variable stars werediscovered. Additionally, we found 17 new SB1 (plus 16 new candidates)and 19 new SB2 systems, as well as one definite and two possible new SB3systems. Finally, we present a list of 21 stars that we think are mostsuitable candidates for a detailed study with the Doppler-imagingtechnique. Tables A1--A3 are only available in electronic form at theCDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Photometric Measurements of the Fields of More than 700 Nearby Stars
In preparation for optical/IR interferometric searches for substellarcompanions of nearby stars, we undertook to characterize the fields ofall nearby stars visible from the Northern Hemisphere to determinesuitable companions for interferometric phase referencing. Because theKeck Interferometer in particular will be able to phase-reference oncompanions within the isoplanatic patch (30") to about 17th magnitude atK, we took images at V, r, and i that were deep enough to determine iffield stars were present to this magnitude around nearby stars using aspot-coated CCD. We report on 733 fields containing 10,629 measurementsin up to three filters (Gunn i, r and Johnson V) of nearby stars down toabout 13th magnitude at V.

Towards a fundamental calibration of stellar parameters of A, F, G, K dwarfs and giants
I report on the implementation of the empirical surface brightnesstechnique using the near-infrared Johnson broadband { (V-K)} colour assuitable sampling observable aimed at providing accurate effectivetemperatures of 537 dwarfs and giants of A-F-G-K spectral-type selectedfor a flux calibration of the Infrared Space Observatory (ISO). Thesurface brightness-colour correlation is carefully calibrated using aset of high-precision angular diameters measured by moderninterferometry techniques. The stellar sizes predicted by thiscorrelation are then combined with the bolometric flux measurementsavailable for a subset of 327 ISO standard stars in order to determineone-dimensional { (T, V-K)} temperature scales of dwarfs and giants. Theresulting very tight relationships show an intrinsic scatter induced byobservational photometry and bolometric flux measurements well below thetarget accuracy of +/- 1 % required for temperature determinations ofthe ISO standards. Major improvements related to the actual directcalibration are the high-precision broadband { K} magnitudes obtainedfor this purpose and the use of Hipparcos parallaxes for dereddeningphotometric data. The temperature scale of F-G-K dwarfs shows thesmallest random errors closely consistent with those affecting theobservational photometry alone, indicating a negligible contributionfrom the component due to the bolometric flux measurements despite thewide range in metallicity for these stars. A more detailed analysisusing a subset of selected dwarfs with large metallicity gradientsstrongly supports the actual bolometric fluxes as being practicallyunaffected by the metallicity of field stars, in contrast with recentresults claiming somewhat significant effects. The temperature scale ofF-G-K giants is affected by random errors much larger than those ofdwarfs, indicating that most of the relevant component of the scattercomes from the bolometric flux measurements. Since the giants have smallmetallicities, only gravity effects become likely responsible for theincreased level of scatter. The empirical stellar temperatures withsmall model-dependent corrections are compared with the semiempiricaldata by the Infrared Flux Method (IRFM) using the large sample of 327comparison stars. One major achievement is that all empirical andsemiempirical temperature estimates of F-G-K giants and dwarfs are foundto be closely consistent between each other to within +/- 1 %. However,there is also evidence for somewhat significant differential effects.These include an average systematic shift of (2.33 +/- 0.13) % affectingthe A-type stars, the semiempirical estimates being too low by thisamount, and an additional component of scatter as significant as +/- 1 %affecting all the comparison stars. The systematic effect confirms theresults from other investigations and indicates that previousdiscrepancies in applying the IRFM to A-type stars are not yet removedby using new LTE line-blanketed model atmospheres along with the updatedabsolute flux calibration, whereas the additional random component isfound to disappear in a broadband version of the IRFM using an infraredreference flux derived from wide rather than narrow band photometricdata. Table 1 and 2 are only available in the electronic form of thispaper

Kinematics and Metallicity of Stars in the Solar Region
Several samples of nearby stars with the most accurate astrometric andphotometric parameters are searched for clues to their evolutionaryhistory. The main samples are (1) the main-sequence stars with b - ybetween 0.29 and 0.59 mag (F3 to K1) in the Yale parallax catalog, (2) agroup of high-velocity subgiants studied spectroscopically by Ryan &Lambert, and (3) high-velocity main-sequence stars in the extensiveinvestigation by Norris, Bessel, & Pickles. The major conclusionsare as follows: (1) The oldest stars (halo), t >= 10-12 Gyr, haveV-velocities (in the direction of Galactic rotation and referred to theSun) in the range from about -50 to -800 km s^-1 and have aheavy-element abundance [Fe/H] of less than about -0.8 dex. The agerange of these objects depends on our knowledge of globular clusterages, but if age is correlated with V-velocity, the youngest may be M22and M28 (V ~ -50 km s^-1) and the oldest NGC 3201 (V ~ -500 km s^-1) andassorted field stars. (2) The old disk population covers the large agerange from about 2 Gyr (Hyades, NGC 752) to 10 or 12 Gyr (Arcturusgroup, 47 Tuc), but the lag (V) velocity is restricted to less thanabout 120 km s^-1 and [Fe/H] >= -0.8 or -0.9 dex. The [Fe/H] ~ -0.8dex division between halo and old disk, near t ~ 10-12 Gyr, is marked bya change in the character of the CN index (C_m) and of the blanketingparameter K of the DDO photometry. (3) The young disk population, t <2 Gyr, is confined exclusively to a well-defined area of the (U, V)velocity plane. The age separating young and old disk stars is also thatseparating giant evolution of the Hyades (near main-sequence luminosity)and M67 (degenerate helium cores and a large luminosity rise) kinds. Thetwo disk populations are also separated by such indexes as the g-indexof Geveva photometry. There appears to be no obvious need to invokeexogeneous influences to understand the motion and heavy-elementabundance distributions of the best-observed stars near the Sun.Individual stars of special interest include the parallax star HD 55575,which may be an equal-component binary, and the high-velocity star HD220127, with a well-determined space velocity near 1000 km s^-1.

Determination of the temperatures of selected ISO flux calibration stars using the Infrared Flux Method
Effective temperatures for 420 stars with spectral types between A0 andK3, and luminosity classes between II and V, selected for a fluxcalibration of the Infrared Space Observatory, ISO, have been determinedusing the Infrared Flux Method (IRFM). The determinations are based onnarrow and wide band photometric data obtained for this purpose, andtake into account previously published narrow-band measures oftemperature. Regression coefficients are given for relations between thedetermined temperatures and the photometric parameters (B2-V1), (b-y)and (B-V), corrected for interstellar extinction through use ofHipparcos parallaxes. A correction for the effect of metallicity on thedetermination of integrated flux is proposed. The importance of aknowledge of metallicity in the representation of derived temperaturesfor Class V, IV and III stars by empirical functions is discussed andformulae given. An estimate is given for the probable error of eachtemperature determination. Based on data from the ESA HipparcosAstrometry Satellite.

Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue.
We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.

A survey of proper motion stars. 12: an expanded sample
We report new photometry and radial velocities for almost 500 stars fromthe Lowell Proper Motion Catalog. We combine these results with ourprior sample and rederive stellar temperatures based on the photometry,reddening, metallicities (using chi squared matching of our 22,500 lowSignal to Noise (S/N) high resolution echelle spectra with a grid ofsynthetic spectra), distances, space motions, and Galactic orbitalparameters for 1269 (kinematics) and 1261 (metallicity) of the 1464stars in the complete survey. The frequency of spectroscopic binariesfor the metal-poor ((m/H) less than or equal to -1.2) stars with periodsshorter than 3000 days is at least 15%. The spectroscopic binaryfrequency for metal-rich stars ((m/H) greater than -0.5) appears to belower, about 9%, but this may be a selection effect. We also discussspecial classes of stars, including treatment of the double-linedspectroscopic binaries, and identification of subgiants. Four possiblenew members of the class of field blue stragglers are noted. We pointout the detection of three possible new white dwarfs, six broad-lined(binary) systems, and discuss briefly the three already knownnitrogen-rich halo dwarfs. The primary result of this paper will beavailable on CD-ROM, in the form of a much larger table.

UVBY - beta photometry of high-velocity and metal-poor stars. VI - A second catalogue, and stellar populations of the Galaxy
A second catalog of uvby-beta photometry for 553 high-velocity stars ispresented. Combining the catalogs, reliable (Fe/H) values are obtainedfor 1214 stars and reliable kinematic parameters for 1149. The totalsample contains at least three significant, distinct stellar populationswith properties very similar to those given in the literature of the oldthin disk, thick disk, and halo. The thick-disk component has mean(Fe/H) about -0.50 +/- 0.10 dex and sigma(Fe/H) about 0.25 +/- 0.03 dex,but there is evidence for a significant thick-disk contribution down to(Fe/H) about -1.4. A diagonal cut in the V(rot), (Fe/H) diagramindicates that there is not a chemical gradient in the Galactic halo.The mean V(rot), mean (Fe/H) curve for the whole sample indicates thatthe halo evolved mostly independently of the disk.

Preliminary Version of the Third Catalogue of Nearby Stars
Not Available

Luminosities, abundances, and motions of stars brighter than visual magnitude 15.1 and annual proper motions larger than one-half arcsecond
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1987AJ.....93..393E&db_key=AST

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Zwillinge
Right ascension:07h59m33.94s
Declination:+20°50'37.9"
Apparent magnitude:7.682
Distance:23.143 parsecs
Proper motion RA:180.1
Proper motion Dec:-550.8
B-T magnitude:8.723
V-T magnitude:7.768

Catalogs and designations:
Proper Names
HD 1989HD 65430
TYCHO-2 2000TYC 1375-1282-1
HIPHIP 39064

→ Request more catalogs and designations from VizieR