Home     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Astro Photo     The Collection     Forum     Blog New!     FAQ     Login  
→ Adopt this star  

TYC 5458-44-1


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

The All-sky GEOS RR Lyr Survey with the TAROT Telescopes: Analysis of the Blazhko Effect
We used the GEOS database to study the Blazhko effect of galactic RRabstars. The database is continuously enriched by maxima supplied byamateur astronomers and by a dedicated survey by means of the two TAROTrobotic telescopes. The same value of the Blazhko period is observed atdifferent values of the pulsation periods and different values of theBlazhko periods are observed at the same value of the pulsation period.There are clues suggesting that the Blazhko effect is changing from onecycle to the next. The secular changes in the pulsation and Blazhkoperiods of Z CVn are anticorrelated. The diagrams of magnitudes againstphases of the maxima clearly show that the light curves of Blazhkovariables can be explained as modulated signals, both in amplitude andin frequency. The closed curves describing the Blazhko cycles in suchdiagrams have different shapes, reflecting the phase shifts between theepochs of the brightest maximum and the maximum O - C. Our sampleshows that both clockwise and counterclockwise directions are possiblefor similar shapes. The improved observational knowledge of the Blazhkoeffect, in addition to some peculiarities of the light curves, has yetto be explained by a satisfactory physical mechanism.

Recent Maxima of 64 Short Period Pulsating Stars
This paper contains times of maxima for 64 short period pulsating stars(primarily RR Lyrae and d Scuti stars). This represents a portion of theCCD observations received by the AAVSO Short Period Pulsator (SPP)section through December 2009.

Automated Variable Star Classification Using the Northern Sky Variability Survey
We have identified 4659 variable objects in the Northern Sky VariabilitySurvey. We have classified each of these objects into one of the fivevariable star classes: (1) Algol/β Lyr systems includingsemidetached, and detached eclipsing binaries, (2) W Ursae Majorisovercontact and ellipsoidal variables, (3) long-period variables such asCepheid and Mira-type objects, (4) RR Lyr pulsating variables, and (5)short-period variables including δ Scuti stars. All the candidateshave outside of eclipse magnitudes of ~10-13. The primary classificationtool is the use of Fourier coefficients combined with period informationand light-curve properties to make the initial classification. Briefmanual inspection was done on all light curves to remove nonperiodicvariables that happened to slip through the process and to quantify anyerrors in the classification pipeline. We list the coordinates, period,Two Micron All Sky Survey colors, total amplitude variation, and anyprevious classification of the object. 548 objects previously identifiedas Algols in our previous paper are not included here.

Observational constraints on the magnetic field of RR Lyrae stars
Context: A high percentage of the astrophysically important RR Lyraestars show a periodic amplitude and/or phase modulation of theirpulsation cycles. More than a century after its discovery, this“Blazhko effect” still lacks acceptable theoreticalunderstanding. In one of the plausible models for explaining thephenomenon, the modulation is caused by the effects of a magnetic field.So far, the available observational data have not allowed us to eithersupport nor rule out the presence of a magnetic field in RR Lyrae stars.Aims: We intend to determine whether RR Lyrae stars are generallycharacterized by the presence of a magnetic field organized on a largescale. Methods: With the help of the FORS1 instrument at the ESOVLT we performed a spectropolarimetric survey of 17 relatively brightsouthern RR Lyrae stars, both Blazhko stars and non-modulated stars, anddetermined their mean longitudinal magnetic field with a typical errorbar <30 G. Results: All our measurements of the meanlongitudinal magnetic field resulted in null detections within 3?.From our data we can set an upper limit for the strength of the dipolecomponent of the magnetic fields of RR Lyrae stars to ~130 G. Because ofthe limitations intrinsic to the diagnostic technique, we cannot excludethe presence of higher order multipolar components. Conclusions:The outcome of this survey clarifies that the Blazhko modulation in thepulsation of RR Lyrae stars is not correlated with the presence of astrong, quasi-dipolar magnetic field.

BAV-Results of observations - Photoelectric Minima of Selected Eclipsing Binaries and Maxima of Pulsating Stars
Not Available

Korrekturen zu Vorhersagen im BAV Circular 2008.
Not Available

Stellar evolution through the ages: period variations in galactic RRab stars as derived from the GEOS database and TAROT telescopes
Context: The theory of stellar evolution can be more closely tested ifwe have the opportunity to measure new quantities. Nowadays,observations of galactic RR Lyr stars are available on a time baselineexceeding 100 years. Therefore, we can exploit the possibility ofinvestigating period changes, continuing the pioneering work started byV. P. Tsesevich in 1969. Aims: We collected the available times ofmaximum brightness of the galactic RR Lyr stars in the GEOS RR Lyrdatabase. Moreover, we also started new observational projects,including surveys with automated telescopes, to characterise the O-Cdiagrams better. Methods: The database we built has proved to be a verypowerful tool for tracing the period variations through the ages. Weanalyzed 123 stars showing a clear O-C pattern (constant, parabolic orerratic) by means of different least-squares methods. Results: Clearevidence of period increases or decreases at constant rates has beenfound, suggesting evolutionary effects. The median values are β =+0.14 d Myr-1 for the 27 stars showing a period increase andβ = -0.20 d Myr-1 for the 21 stars showing a perioddecrease. The large number of RR Lyr stars showing a period decrease(i.e., blueward evolution) is a new and intriguing result. There is anexcess of RR Lyr stars showing large, positive β values. Moreover,the observed β values are slightly larger than those predicted bytheoretical models.Tables 3, 4, 5 and Figs. 2, 3 are only available in electronic form athttp://www.aanda.org

The GEOS RR Lyr Survey
Not Available

Multiperiodic Galactic field RR Lyrae stars in the ASAS catalogue
The All Sky Automated Survey (ASAS) monitors bright stars (8 < V <14 mag) south of declination +28°. The ASAS Catalogue of VariableStars (ACVS) presently contains 50099 objects; among them are 2212objects classified as RR Lyrae pulsating variables. We use ASASphotometric V-band data to search for multiperiodicity in those stars.We find that 73 of 1435 RRab stars and 49 of 756 RRc stars exhibit theBlazhko effect. We observe a deficiency of RRab Blazhko variables withmain pulsation periods greater than 0.65 d. The Blazhko periods of RRcstars exhibit a strongly bimodal distribution. During our study wediscovered the Blazhko effect with multiple periods in object ASAS050747-3351.9 = SU Col. Blazhko periods of 89.3 and 65.8 d and acandidate of 29.5 d were identified with periodogram peaks near thefirst three harmonics of the main pulsation. These observations mayinspire new models of the Blazhko effect, which has eluded a consistenttheory since its discovery about one hundred years ago. Long-term lightcurve changes were found in 29 stars. We also found 19 Galactic doublemode pulsators (RRd), of which four are new discoveries, raising thenumber of ASAS discoveries of such objects to 16, out of 27 known in thefield of our Galaxy.

Analysis of RR Lyrae Stars in the Northern Sky Variability Survey
We use data from the Northern Sky Variability Survey (NSVS), obtainedfrom the first-generation Robotic Optical Transient Search Experiment(ROTSE-I), to identify and study RR Lyrae variable stars in the solarneighborhood. We initially identified 1197 RRab (RR0) candidate starsbrighter than the ROTSE median magnitude V=14. Periods, amplitudes, andmean V magnitudes are determined for a subset of 1188 RRab stars withwell-defined light curves. Metallicities are determined for 589 stars bythe Fourier parameter method and by the relationship between period,amplitude, and [Fe/H]. We comment on the difficulties of clearlyclassifying RRc (RR1) variables in the NSVS data set. Distances to theRRab stars are calculated using an adopted luminosity-metallicityrelation with corrections for interstellar extinction. The 589 RRabstars in our final sample are used to study the properties of the RRabpopulation within 5 kpc of the Sun. The Bailey diagram of period versusamplitude shows that the largest component of this sample belongs toOosterhoff type I. Metal-rich ([Fe/H]>-1) RRab stars appear to beassociated with the Galactic disk. Our metal-rich RRab sample mayinclude a thin-disk, as well as a thick-disk population, although theuncertainties are too large to establish this. There is some evidenceamong the metal-rich RRab stars for a decline in scale height withincreasing [Fe/H], as was found by Layden. The distribution of RRabstars with -1<[Fe/H]<-1.25 indicates that within this metallicityrange the RRab stars are a mixture of stars belonging to halo and diskpopulations.

[Fe/H] derived from the light curves of RR Lyrae stars in the Galactic halo
Context: .The iron abundance of halo RR Lyrae stars can provideimportant information about the formation history of the Galactichalo. Aims: .We determine the [Fe/H] of the sample of halo RRabstars by using the P-ϕ31-[Fe/H] relation developed byJurcsik & Kovács based on their light curves. We need toextend the relation from the V band to our unfiltered CCD band. Methods: .To do this, we use the low-dispersion spectroscopic [Fe/H] ofliteratures and the photometric data released by the first-generationRobotic Optical Transient Search Experiment (ROTSE-I) project. We doregression analyses for the calibrating sample using a linear functionand test its validity by comparing of the predicted [Fe/H] with thespectroscopic [Fe/H]. In general, the fit accuracy for the two different[Fe/H] is better than 0.19 dex. Results: . We derive an empiricalP-ϕ31-[Fe/H] linear relation for the unfiltered CCD band(ROTSE-I), i.e. [ Fe/H]=-3.766-5.350P+1.044ϕ31. In ourtest, the P-ϕ31-[Fe/H] relation is also fit for ourunfiltered CCD band. In addition, another linear relation,ϕ31_V=0.882+0.792ϕ31_W, is also derivedfor the transformation between the V and W bands. We present thepredicted [Fe/H] of the sample (the 31 halo RRab stars) in a catalog. Conclusions: . The mean [Fe/H] of the sample is -1.63 with dispersionof 0.45 dex in distribution, which is consistent with the resultsderived from the blue horizontal branch star candidates by Kinnman etal. (2000, A&A, 364, 102). The mean [Fe/H] values of the RRab starsin the range of 1 kpc, 2 kpc, and 3 kpc from the star 91 (a double-modeRR Lyrae star), are all lower than that of the background halo stars.These values are consistent with that of star 91 suggested by Wu et al.(2005, AJ, 130, 1640), which indicates they might have a common origin.

A catalogue of RR Lyrae stars from the Northern Sky Variability Survey
A search for RR Lyrae stars has been conducted in the publicly availabledata of the Northern Sky Variability Survey. Candidates have beenselected by the statistical properties of their variation; the standarddeviation, skewness and kurtosis with appropriate limits determined froma sample 314 known RRab and RRc stars listed in the General Catalogue ofVariable Stars. From the period analysis and light-curve shape of over3000 candidates 785 RR Lyrae have been identified of which 188 arepreviously unknown. The light curves were examined for the Blazhkoeffect and several new stars showing this were found. Six double-mode RRLyrae stars were also found of which two are new discoveries. Somepreviously known variables have been reclassified as RR Lyrae stars andsimilarly some RR Lyrae stars have been found to be other types ofvariable, or not variable at all.

Southern RR Lyrae Stars Exhibiting the Blazhko Effect
Blazhko periods are given for 43 RRab stars based on data from ASAS3.

Proper identification of RR Lyrae stars brighter than 12.5 mag
RR Lyrae stars are of great importance for investigations of Galacticstructure. However, a complete compendium of all RR-Lyraes in the solarneighbourhood with accurate classifications and coordinates does notexist to this day. Here we present a catalogue of 561 local RR-Lyraestars (V_max ≤ 12.5 mag) according to the magnitudes given in theCombined General Catalogue of Variable Stars (GCVS) and 16 fainter ones.The Tycho2 catalogue contains ≃100 RR Lyr stars. However, manyobjects have inaccurate coordinates in the GCVS, the primary source ofvariable star information, so that a reliable cross-identification isdifficult. We identified RR Lyrae from both catalogues based on anintensive literature search. In dubious cases we carried out photometryof fields to identify the variable. Mennessier & Colome (2002,A&A, 390, 173) have published a paper with Tyc2-GCVSidentifications, but we found that many of their identifications arewrong.

RR Lyrae stars: kinematics, orbits and z-distribution
RR Lyrae stars in the Milky Way are good tracers to study the kinematicbehaviour and spatial distribution of older stellar populations. Arecently established well documented sample of 217 RR Lyr stars withV<12.5 mag, for which accurate distances and radial velocities aswell as proper motions from the Hipparcos and Tycho-2 catalogues areavailable, has been used to reinvestigate these structural parameters.The kinematic parameters allowed to calculate the orbits of the stars.Nearly 1/3 of the stars of our sample have orbits staying near the MilkyWay plane. Of the 217 stars, 163 have halo-like orbits fulfilling one ofthe following criteria: Θ < 100 km s-1, orbiteccentricity >0.4, and normalized maximum orbital z-distance>0.45. Of these stars roughly half have retrograde orbits. Thez-distance probability distribution of this sample shows scale heightsof 1.3±0.1 kpc for the disk component and 4.6±0.3 kpc forthe halo component. With our orbit statistics method we found a(vertical) spatial distribution which, out to z=20 kpc, is similar tothat found with other methods. This distribution is also compatible withthe ones found for blue (HBA and sdB) halo stars. The circular velocityΘ, the orbit eccentricity, orbit z-extent and [Fe/H] are employedto look for possible correlations. If any, it is that the metal poorstars with [Fe/H] <1.0 have a wide symmetric distribution aboutΘ=0, thus for this subsample on average a motion independent ofdisk rotation. We conclude that the Milky Way possesses a halo componentof old and metal poor stars with a scale height of 4-5 kpc having randomorbits. The presence in our sample of a few metal poor stars (thus partof the halo population) with thin disk-like orbits is statistically notsurprising. The midplane density ratio of halo to disk stars is found tobe 0.16, a value very dependent on proper sample statistics.

Photoelectric Minima of Selected Eclipsing Binaries and Maxima of Pulsating Stars
Not Available

Iron abundances derived from RR Lyrae light curves and low-dispersion spectroscopy
With the aid of the All Sky Automated Survey (ASAS) database on theGalactic field, we compare the iron abundances of fundamental mode RRLyrae stars derived from the Fourier parameters with those obtained fromlow-dispersion spectroscopy. We show from a set of 79 stars, distinctfrom the original calibrating sample of the Fourier method and selectedwithout quality control, that almost all discrepant estimates are theresults of some defects or peculiarities either in the photometry or inthe spectroscopy. Omitting objects deviating by more than 0.4 dex, theremaining subsample of 64 stars yields Fourier abundances that fit thespectroscopic ones with σ=0.20 dex. Other, more stringentselection criteria and different Fourier decompositions lead to smallersubsamples and concomitant better agreement, down to σ=0.16 dex.Except perhaps for two variables among the 163 stars, comprised of theASAS variables and those of the original calibrating set of the Fouriermethod, all discrepant values can be accounted for by observationalnoise and insufficient data coverage. We suggest that the agreement canbe further improved when new, more accurate spectroscopic data becomeavailable for a test with the best photometric data. As a by-product ofthis analysis, we also compute revised periods and select Blazhkovariables.

Beobachtungssergebnisse Bundesdeutsche Arbeitsgemeinschaft fuer Veraenderliche Sterne e.V.
Not Available

Unterschiedliche Helligkeitsauspragungen des Blazhko-Effectes.
Not Available

Beobachtungsergebnisse Bundesdeutsche Arbeitsgemeinschaft fur Veranderlichen Serne e.V.
Not Available

SZ Hya und S Cnc auffallig.
Not Available

Ein Hoch auf die Hochs Helga und Liljana.
Not Available

Beobachtungsegebnisse Bundesdeutsche Arbeitsgemainschaft fur Veranderliche Sterne e.V.
Not Available

Subsystems of RR Lyrae Variable Stars in Our Galaxy
We have used published, high-accuracy, ground-based and satelliteproper-motion measurements, a compilation of radial velocities, andphotometric distances to compute the spatial velocities and Galacticorbital elements for 174 RR Lyrae (ab) variable stars in the solarneighborhood. The computed orbital elements and published heavy-elementabundances are used to study relationships between the chemical,spatial, and kinematic characteristics of nearby RR Lyrae variables. Weobserve abrupt changes of the spatial and kinematic characteristics atthe metallicity [Fe/H]≈-0.95 and also when the residual spatialvelocities relative to the LSR cross the critical value V res≈290km/s. This provides evidence that the general population of RR Lyraestars is not uniform and includes at least three subsystems occupyingdifferent volumes in the Galaxy. Based on the agreement between typicalparameters for corresponding subsystems of RR Lyrae stars and globularclusters, we conclude that metal-rich stars and globular clusters belongto a rapidly rotating and fairly flat, thick-disk subsystem with a largenegative vertical metallicity gradient. Objects with larger metaldeficiencies can, in turn, be subdivided into two populations, but usingdifferent criteria for stars and clusters. We suggest that field starswith velocities below the critical value and clusters with extremelyblue horizontal branches form a spherical, slowly rotating subsystem ofthe protodisk halo, which has a common origin with the thick disk; thissubsystem has small but nonzero radial and vertical metallicitygradients. The dimensions of this subsystem, estimated from theapogalactic radii of orbits of field stars, are approximately the same.Field stars displaying more rapid motion and clusters with redderhorizontal branches constitute the spheroidal subsystem of the accretedouter halo, which is approximately a factor of three larger in size thanthe first two subsystems. It has no metallicity gradients; most of itsstars have eccentric orbits, many display retrograde motion in theGalaxy, and their ages are comparatively low, supporting the hypothesisthat the objects in this subsystem had an extragalactic origin.

Bias Properties of Extragalactic Distance Indicators. XI. Methods to Correct for Observational Selection Bias for RR Lyrae Absolute Magnitudes from Trigonometric Parallaxes Expected from the Full-Sky Astrometric Mapping Explorer Satellite
A short history is given of the development of the correction forobservation selection bias inherent in the calibration of absolutemagnitudes using trigonometric parallaxes. The developments have beendue to Eddington, Jeffreys, Trumpler & Weaver, Wallerstein,Ljunggren & Oja, West, Lutz & Kelker, after whom the bias isnamed, Turon Lacarrieu & Crézé, Hanson, Smith, andmany others. As a tutorial to gain an intuitive understanding of severalcomplicated trigonometric bias problems, we study a toy bias model of aparallax catalog that incorporates assumed parallax measuring errors ofvarious severities. The two effects of bias errors on the derivedabsolute magnitudes are (1) the Lutz-Kelker correction itself, whichdepends on the relative parallax error δπ/π and the spatialdistribution, and (2) a Malmquist-like ``incompleteness'' correction ofopposite sign due to various apparent magnitude cutoffs as they areprogressively imposed on the catalog. We calculate the bias propertiesusing simulations involving 3×106 stars of fixedabsolute magnitude using Mv=+0.6 to imitate RR Lyraevariables in the mean. These stars are spread over a spherical volumebounded by a radius 50,000 pc with different spatial densitydistributions. The bias is demonstrated by first using a fixed rmsparallax uncertainty per star of 50 μas and then using a variable rmsaccuracy that ranges from 50 μas at apparent magnitude V=9 to 500μas at V=15 according to the specifications for the Full-SkyAstrometric Mapping Explorer (FAME) satellite to be launched in 2004.The effects of imposing magnitude limits and limits on the``observer's'' error, δπ/π, are displayed. We contrast themethod of calculating mean absolute magnitude directly from theparallaxes where bias corrections are mandatory, with an inverse methodusing maximum likelihood that is free of the Lutz-Kelker bias, althougha Malmquist bias is present. Simulations show the power of the inversemethod. Nevertheless, we recommend reduction of the data using bothmethods. Each must give the same answer if each is freed from systematicerror. Although the maximum likelihood method will, in theory, eliminatemany of the bias problems of the direct method, nevertheless the biascorrections required by the direct method can be determined empiricallyvia Spaenhauer diagrams immediately from the data, as discussed in theearlier papers of this series. Any correlation of the absolute(trigonometric) magnitudes with the (trigonometric) distances is thebias. We discuss the level of accuracy that can be expected in acalibration of RR Lyrae absolute magnitudes from the FAME data over themetallicity range of [Fe/H] from 0 to -2, given the known frequency ofthe local RR Lyrae stars closer than 1.5 kpc. Of course, use will alsobe made of the entire FAME database for the RR Lyrae stars over thecomplete range of distances that can be used to empirically determinethe random and systematic errors from the FAME parallax catalog, usingcorrelations of derived absolute magnitude with distance and position inthe sky. These bias corrections are expected to be much more complicatedthan only a function of apparent magnitude because of variousrestrictions due to orbital constraints on the spacecraft.

Periode des Blazhko-Effektes im BAV Circular 2003.
Not Available

Absolute Magnitudes and Kinematic Parameters of the Subsystem of RR Lyrae Variables
The statistical parallax technique is applied to a sample of 262 RRabLyrae variables with published photoelectric photometry, metallicities,and radial velocities and with measured absolute proper motions.Hipparcos, PPM, NPM, and the Four-Million Star Catalog (Volchkov et al.1992) were used as the sources of proper motions; the proper motionsfrom the last three catalogs were reduced to the Hipparcos system. Wedetermine parameters of the velocity distribution for halo [(U_0, V_0,W_0) = (-9 +/- 12, -214 +/- 10, -16 +/- 7) km/s and (sigma_U, sigma_V,sigma_W) = (164 +/- 11, 105 +/- 7, 95 +/- 7) km/s] and thick-disk [(U_0,V_0, W_0) = (-16 +/- 8, -41 +/- 7, -18 +/- 5) km/s and (sigma_U,sigma_V, sigma_W) = (53 +/- 9, 42 +/- 8, 26 +/- 5) km/s] RR Lyrae, aswell as the intensity-averaged absolute magnitude for RR Lyrae of thesepopulations: = 0.77 +/- 0.10 and = +1.11 +/-0.28 for the halo and thick-disk objects, respectively. The metallicitydependence of the absolute magnitude of RR Lyrae is analyzed(=(0.76 +/- 0.12) + (0.26 +/- 0.26) x ([Fe/H] + 1.6) = 1.17 +0.26 x [Fe/H]). Our results are in satisfactory agreement with the_(RR)-[Fe/H] relation from Carney et al. (1992)(_(RR) = 1.01 + 0.15 x [Fe/H]) obtained by Baade-Wesselink'smethod. They provide evidence for a short distance scale: the LMCdistance modulus and the distance to the Galactic center are 18.22 +/-0.11 and 7.4 +/-±0.5 kpc, respectively. The zero point ofthe distance scale and the kinematic parameters of the RR Lyraepopulations are shown to be virtually independent of the source ofabsolute proper motions used and of whether they are reduced to theHipparcos system or not.

Stars with the Largest Hipparcos Photometric Amplitudes
A list of the 2027 stars that have the largest photometric amplitudes inHipparcos Photometry shows that most variable stars are all Miras. Thepercentage of variable types change as a function of amplitude. Thiscompilation should also be of value to photometrists looking forrelatively unstudied, but large amplitude stars.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Ύδρα
Right ascension:09h13m48.81s
Declination:-09°19'08.8"
Apparent magnitude:11.466
Proper motion RA:2.1
Proper motion Dec:-54.7
B-T magnitude:11.68
V-T magnitude:11.484

Catalogs and designations:
Proper Names
TYCHO-2 2000TYC 5458-44-1
USNO-A2.0USNO-A2 0750-06770172
HIPHIP 45292

→ Request more catalogs and designations from VizieR