Home     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Astro Photo     The Collection     Forum     Blog New!     FAQ     Login  
→ Adopt this star  

HD 46052 (WWAurigae)


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Computed Hβ indices from ATLAS9 model atmospheres
Aims.Grids of Hβ indices based on updated (new-ODF) ATLAS9 modelatmospheres were computed for solar and scaled solar metallicities[+0.5], [+0.2], [0.0], [ -0.5] , [ -1.0] , [ -1.5] , [ -2.0] , [ -2.5]and for α enhanced compositions [+0.5a], [0.0a], [ -0.5a] , [-1.0a] , [ -1.5a] , [ -2.0a] , [ -2.5a] , and [ -4.0a] . Methods:.Indices for T_eff > 5000 K were computed with the same methods asdescribed by Lester et al. (1986, LGK86) except for a differentnormalization of the computed natural system to the standard system.LGK86 used special ODFs to compute the fluxes. For T_eff ≤ 5000 K wecomputed the fluxes using the synthetic spectrum method. In order toassess the accuracy of the computed indices comparisons were made withthe indices computed by Smalley & Dworetsky (1995, A&A, 293,446, MD95) and with the empirical relations T_eff-Hβ given byAlonso et al. (1996, A&A, 313, 873) for several metallicities.Furthermore, for cool stars, temperatures inferred from the computedindices were compared with those of the fundamental stars listed byMD95. The same kind of comparison was made between gravities for B-typestars. Results: .The temperatures from the computed indices are ingood agreement, within the error limits, with the literature values for4750 K ≤ T_eff ≤ 8000 K, while the gravities agree for T_eff> 9000 K. The computed Hβ indices for the Sun and for Procyonare very close to the observed values. The comparison between theobserved and computed Hβ indices as function of the observedHβ has shown a very small trend which almost completely disappearswhen only stars hotter than 10 000 K are considered. The trend due tothe cool stars is probably related with the low accuracy of thefundamental T_eff which are affected by large errors for most of thestars.

Absolute dimensions of detached eclipsing binaries - I. The metallic-lined system WW Aurigae
WW Aurigae is a detached eclipsing binary composed of two metallic-linedA-type stars orbiting each other every 2.5 d. We have determined themasses and radii of both components to accuracies of 0.4 and 0.6 percent, respectively. From a cross-correlation analysis of high-resolutionspectra we find masses of 1.964 +/- 0.007 Msolar for theprimary star and 1.814 +/- 0.007 Msolar for the secondarystar. From an analysis of photoelectric uvby and UBV light curves wefind the radii of the stars to be 1.927 +/- 0.011 Rsolar and1.841 +/- 0.011 Rsolar, where the uncertainties have beencalculated using a Monte Carlo algorithm. Fundamental effectivetemperatures of the two stars have been derived, using the Hipparcosparallax of WW Aur and published ultraviolet, optical and infraredfluxes; these are 7960 +/- 420 and 7670 +/- 410 K. The masses, radii andeffective temperatures of WW Aur are only matched by theoreticalevolutionary models for a fractional initial metal abundance, Z, ofapproximately 0.06 and an age of roughly 90 Myr. This seems to be thehighest metal abundance inferred for a well-studied detached eclipsingbinary, but we find no evidence that it is related to the metallic-linednature of the stars. The circular orbit of WW Aur is in conflict withthe circularization time-scales of both the Tassoul and the Zahn tidaltheories and we suggest that this is due to pre-main-sequence evolutionor the presence of a circular orbit when the stars were formed.

Observed Orbital Eccentricities
For 391 spectroscopic and visual binaries with known orbital elementsand having B0-F0 IV or V primaries, we collected the derivedeccentricities. As has been found by others, those binaries with periodsof a few days have been circularized. However, those with periods up toabout 1000 or more days show reduced eccentricities that asymptoticallyapproach a mean value of 0.5 for the longest periods. For those binarieswith periods greater than 1000 days their distribution of eccentricitiesis flat from 0 to nearly 1, indicating that in the formation of binariesthere is no preferential eccentricity. The binaries with intermediateperiods (10-100 days) lack highly eccentric orbits.

An Apparent Descriptive Method for Judging the Synchronization of Rotation of Binary Stars
The problem of the synchronous rotation of binary stars is judged byusing a synchronous parameter Q introduced in an apparent descriptivemethod. The synchronous parameter Q is defined as the ratio of therotational period to the orbital period. The author suggests severalapparent phenomenal descriptive methods for judging the synchronizationof rotation of binary stars. The first method is applicable when theorbital inclination is well-known. The synchronous parameter is definedby using the orbital inclination i and the observable rotationalvelocity (V1,2 sin i)M. The method is mainly suitable for eclipsingbinary stars. Several others are suggested for the cases when theorbital inclination i is unknown. The synchronous parameters are definedby using a1,2 sin i,m1,2 sin3 i, the mass function f (m) andsemi-amplitudes of the velocity curve, K1,2 given in catalogue ofparameters of spectroscopic binary systems and (V1,2 sin i)M. Thesemethods are suitable for spectroscopic binary stars including those thatshow eclipses and visual binary stars concurrently. The synchronousparameters for fifty-five components in thirty binary systems arecalculated by using several methods. The numerical results are listed inTables 1 and 2. The statistical results are listed in Table 3. Inaddition, several apparent descriptive methods are discussed.

Tidal Effects in Binaries of Various Periods
We found in the published literature the rotational velocities for 162B0-B9.5, 152 A0-A5, and 86 A6-F0 stars, all of luminosity classes V orIV, that are in spectroscopic or visual binaries with known orbitalelements. The data show that stars in binaries with periods of less thanabout 4 days have synchronized rotational and orbital motions. Stars inbinaries with periods of more than about 500 days have the samerotational velocities as single stars. However, the primaries inbinaries with periods of between 4 and 500 days have substantiallysmaller rotational velocities than single stars, implying that they havelost one-third to two-thirds of their angular momentum, presumablybecause of tidal interactions. The angular momentum losses increase withdecreasing binary separations or periods and increase with increasingage or decreasing mass.

An Assessment of Dynamical Mass Constraints on Pre-Main-Sequence Evolutionary Tracks
We have assembled a database of stars having both masses determined frommeasured orbital dynamics and sufficient spectral and photometricinformation for their placement on a theoretical H-R diagram. Our sampleconsists of 115 low-mass (M<2.0 Msolar) stars, 27pre-main-sequence and 88 main-sequence. We use a variety of availablepre-main-sequence evolutionary calculations to test the consistency ofpredicted stellar masses with dynamically determined masses. Despitesubstantial improvements in model physics over the past decade, largesystematic discrepancies still exist between empirical and theoreticallyderived masses. For main-sequence stars, all models considered predictmasses consistent with dynamical values above 1.2 Msolar andsome models predict consistent masses at solar or slightly lower masses,but no models predict consistent masses below 0.5 Msolar,with all models systematically underpredicting such low masses by5%-20%. The failure at low masses stems from the poor match of mostmodels to the empirical main sequence below temperatures of 3800 K, atwhich molecules become the dominant source of opacity and convection isthe dominant mode of energy transport. For the pre-main-sequence samplewe find similar trends. There is generally good agreement betweenpredicted and dynamical masses above 1.2 Msolar for allmodels. Below 1.2 Msolar and down to 0.3 Msolar(the lowest mass testable), most evolutionary models systematicallyunderpredict the dynamically determined masses by 10%-30%, on average,with the Lyon group models predicting marginally consistent masses inthe mean, although with large scatter. Over all mass ranges, theusefulness of dynamical mass constraints for pre-main-sequence stars isin many cases limited by the random errors caused by poorly determinedluminosities and especially temperatures of young stars. Adopting awarmer-than-dwarf temperature scale would help reconcile the systematicpre-main-sequence offset at the lowest masses, but the case for this isnot compelling, given the similar warm offset at older ages between mostsets of tracks and the empirical main sequence. Over all age ranges, thesystematic discrepancies between track-predicted and dynamicallydetermined masses appear to be dominated by inaccuracies in thetreatment of convection and in the adopted opacities.

162-nd List of Minima Timings of Eclipsing Binaries by BBSAG Observers
Not Available

Das Brunner Punktesystem.
Not Available

Beobachtungsergebnisse Bundesdeutsche Arbeitsgemeinschaft fur Veraenderliche Sterne e.V.
Not Available

Determination of the Ages of Close Binary Stars on the Main Sequence from Evolutionary Model Stars of Claret and Gimenez
A grid of isochrones, covering a wide range of stellar ages from thezero-age main sequence to 10 billion years, is calculated in the presentwork on the basis of the model stars of Claret and Gimenez withallowance for convective overshoot and mass loss by the components. Theages of 88 eclipsing variables on the main sequence from Andersen'scatalog and 100 chromospherically active stars from Strassmeier'scatalog are calculated with a description of the method of optimuminterpolation. Comparisons with age determinations by other authors aregiven and good agreement is established.

On the anomaly of Balmer line profiles of A-type stars. Fundamental binary systems
In previous work, Gardiner et al. (\cite{GKS99}) found evidence for adiscrepancy between the Teff obtained from Balmer lines withthat from photometry and fundamental values for A-type stars. Aninvestigation into this anomaly is presented using Balmer line profilesof stars in binary system with fundamental values of bothTeff and log g. A revision of the fundamental parameters forbinary systems given by Smalley & Dworetsky (\cite{SD95}) is alsopresented. The Teff obtained by fitting Hα and Hβline profiles is compared to the fundamental values and those obtainedfrom uvby photometry. We find that the discrepancy found by Gardiner etal. (\cite{GKS99}) for stars in the range 7000 K <~ Teff<~ 9000 K is no longer evident. Partly based on DENIS data obtainedat the European Southern Observatory.

Catalogue of Apparent Diameters and Absolute Radii of Stars (CADARS) - Third edition - Comments and statistics
The Catalogue, available at the Centre de Données Stellaires deStrasbourg, consists of 13 573 records concerning the results obtainedfrom different methods for 7778 stars, reported in the literature. Thefollowing data are listed for each star: identifications, apparentmagnitude, spectral type, apparent diameter in arcsec, absolute radiusin solar units, method of determination, reference, remarks. Commentsand statistics obtained from CADARS are given. The Catalogue isavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcar?J/A+A/367/521

Estimating the ages of eclipsing variable DM-stars on the basis of the evolutionary star models by Maeder and Meynet
A set of isochrones covering a wide range of star ages from5\cdot106 to 1010 yr was built on the basis of thestellar models by A. Maeder and G. Meynet with overshooting and massloss for Population I stars with abundances (X, Y, Z) = 0.70, 0.28,0.02. The isochrones were used to compute the ages of 88 eclipsingvariable stars from the catalog by Andersen which lie on the mainsequence. The influence of initial data errors on the rezultes wasinvestigated. The ages derived are in good agreement with the results ofother authors.

Chemical composition of eclipsing binaries: a new approach to the helium-to-metal enrichment ratio
The chemical enrichment law Y(Z) is studied by using detacheddouble-lined eclipsing binaries with accurate absolute dimensions andeffective temperatures. A sample of 50 suitable systems was collectedfrom the literature, and their effective temperatures were carefullyre-determined. The chemical composition of each of the systems wasobtained by comparison with stellar evolutionary models, under theassumption that they should fit an isochrone to the observed propertiesof the components. Evolutionary models covering a wide grid in Z and Ywere adopted for our study. An algorithm was developed for searching thebest-fitting chemical composition (and the age) for the systems, basedon the minimization of a χ2 function. The errors (andbiases) of these parameters were estimated by means of Monte Carlosimulations, with special care put on the correlations existing betweenthe errors of both components. In order to check the physicalconsistency of the results, we compared our metallicity values withempirical determinations, obtaining excellent coherence. Theindependently derived Z and Y values yielded a determination of thechemical enrichment law via weighted linear least-squares fit. Our valueof the slope, ΔY/ΔZ=2.2+/-0.8, is in good agreement withrecent results, but it has a smaller formal error and it is free ofsystematic effects. Linear extrapolation of the enrichment law to zerometals leads to an estimation of the primordial helium abundance ofYp=0.225+/-0.013, possibly affected by systematics in theeffective temperature determination.

Comparison of Parallaxes from Eclipsing Binaries Method with Hipparcos Parallaxes
The parallaxes determined by Lacy (1979) by means of eclipsing binariesmethod are compared with the Hipparcos parallaxes for 19 systems. Theresidual scatter of the distance moduli inferred from eclipsing binariesmethod - after allowing for known errors as given by Lacy and Hipparcos- is equal to 0.18 mag. It decreases to 0.08 mag when obviously notfitting semi-detached systems and systems with chromospheric activity ofcomponents are removed from the sample.

HIPPARCOS Parallaxes of Eclipsing Binaries and the Radiative Flux Scale
Eclipsing binaries with Hipparcos parallaxes are found to define aradiative flux relation for main-sequence stars in the B6-F0 range aboutas well as stars with angular diameters and to extend the range to F8.The fluxes of components of binaries showing large intrinsic variationsfall well below the curve for other stars and its extension to lowertemperatures. Angular diameters of main-sequence stars obtained with thenew generation of stellar interferometers should improve and extend theflux calibration. Based on data from the ESA Hipparcos satellite.

On the HIPPARCOS photometry of chemically peculiar B, A, and F stars
The Hipparcos photometry of the Chemically Peculiar main sequence B, A,and F stars is examined for variability. Some non-magnetic CP stars,Mercury-Manganese and metallic-line stars, which according to canonicalwisdom should not be variable, may be variable and are identified forfurther study. Some potentially important magnetic CP stars are noted.Tables 1, 2, and 3 are available only in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Effective temperature of detached eclipsing binaries from HIPPARCOS parallax
Effective temperatures of detached eclipsing binaries computed throughHipparcos trigonometric parallaxes are compared with the photometricdeterminations. The former are based on the values of the radius, theapparent visual magnitude and the bolometric correction of the star,whereas the latter are obtained from standard calibrations usingStromgren or Johnson colour indices. The working sample contains allwell-studied detached double-lined eclipsing binaries belonging to theHipparcos catalogue and with relative errors in the parallaxes smallerthan 20%. They cover a temperature range from 5000 K to 25000 K. A smallsystematic trend of 0.010 dex (s.d. 0.010) for T_eff <= 10000 K andof 0.015 dex (s.d. 0.060) for T_eff > 10000 K is observed between thetwo temperature determinations, that could be due to inaccuracies onphotometric effective temperatures. Based on data from the ESA Hipparcosastrometry satellite

Further critical tests of stellar evolution by means of double-lined eclipsing binaries
The most accurately measured stellar masses and radii come fromdetached, double-lined eclipsing binaries, as compiled by Andersen. Wepresent a detailed quantitative comparison of these fundamental datawith evolution models for single stars computed with our evolution code,both with and without the effects of enhanced mixing or overshootingbeyond the convective cores. We use the same prescription forovershooting that Schroder, Pols & Eggleton found to reproduce theproperties of zeta Aurigae binaries. For about 80 per cent of the 49binary systems in the sample, both sets of models provide a good fit toboth stars at a single age and metallicity within the observationaluncertainties. We discuss possible causes for the discrepancies in theother systems. For only one system, AI Hya, do the enhanced-mixingmodels provide a significantly better fit to the data. For two others(WX Cep and TZ For) the fit to the enhanced-mixing models is alsobetter. None of the other systems can individually distinguish betweenthe models with and without enhanced mixing. However, the number ofsystems in a post-main-sequence phase is in much better agreement withthe enhanced-mixing models. This test provides supportive evidence forextended mixing in main-sequence stars in the range 2-3Msolar.

The role of convection on the UVBY colours of A, F, and G stars
We discuss the effects of convection on the theoretical uvby colours ofA, F, and G stars. The standard mixing-length theory atlas9 models ofKurucz (1993), with and without approximate overshooting, are comparedto models using the turbulent convection theory proposed by Canuto &Mazzitelli (1991, 1992) and implemented by Kupka (1996a). Comparisonwith fundamental T_eff and log g stars reveals that the Canuto &Mazzitelli models give results that are generally superior to standardmixing-length theory (MLT) without convective overshooting. MLT modelswith overshooting are found to be clearly discrepant. This is supportedby comparisons of non-fundamental stars, with T_eff obtained from theInfrared Flux Method and log g from stellar evolutionary models for opencluster stars. The Canuto & Mazzitelli theory gives values of(b-y)_0 and c_0 that are in best overall agreement with observations.Investigations of the m_0 index reveal that all of the treatments ofconvection presented here give values that are significantly discrepantfor models with T_eff < 6000 K. It is unclear as to whether this isdue to problems with the treatment of convection, missing opacity, orsome other reason. None of the models give totally satisfactory m_0indices for hotter stars, but the Canuto & Mazzitelli models are inclosest overall agreement above 7000 K. Grids of uvby colours, based onthe CM treatment of convection, are presented. These grids represent animprovement over the colours obtained from models using themixing-length theory. The agreement with fundamental stars enables thecolours to be used directly without the need for semi-empiricaladjustments that were necessary with the earlier colour grids. Table~5is only available at the CDS via anonymous ftp 130.79.128.5 or viahttp://cdsweb.u-strasbg.fr/Abstract.html

On the nature of the AM phenomenon or on a stabilization and the tidal mixing in binaries. II. Metallicity and pseudo-synchronization.
We reveal sufficient evidences that for Am binaries the metallicitymight depend on their orbital periods, P_orb_, rather than on vsini. Inparticular, δm_1_ index seems to decrease with increasing orbitalperiod up to at least P_orb_=~50d, probably even up to P_orb_=~200d.This gives further support to our "tidal mixing + stabilization"hypothesis formulated in Part I. Moreover, while the most metallic Amstars seem to have rather large periods the slowest rotators are foundto exhibit substantially shorter P_orb_. A questioning eye is thus caston the generally adopted view that Am peculiarity is caused by asuppressed rotationally induced mixing in slowly rotating `single'stars. The observed anticorrelation between rotation and metallicity mayhave also other than the `textbook' explanation, namely being the resultof the correlation between metallicity and orbital period, as themajority of Am binaries are possibly synchronized. We further argue thatthere is a tendency in Am binaries towards pseudo-synchronization up toP_orb_=~35d. This has, however, no serious impact on our conclusionsfrom Part I; on the contrary, they still hold even if this effect istaken into account.

A Catalogue of Correlations Between Eclipsing Binaries and Other Categories of Double Stars
Among the 9110 stars in The Bright Star Catalogue, there are 225eclipsing or ellipsoidal variables. A search has been made for these incatalogues of spectroscopic binaries, visual double or multiple stars,speckle interferometry, occulation binaries, and galatic clusters. Themajority of the photometric binaries are also members of groups ofhigher multiplicity. The variables are in systems ranging from one to 91stars, five on the average. 199 are either spectroscopic binaries (SB)or stars with variable radial velocity, with orbital periods known for160. Photometric periods are lacking for 48 while SB periods areavailable for 23 of these. Observers with photoelectric equipment areencouraged to plan observations to test if the SB periods are consistentwith photometric data. Observers are likewise encouraged to examinethose stars for which the photometric and SB periods appear to beinconsistent. Parallaxes are available for 86 of the stars, 41 of themindicating distances nearer than 50 parsecs.

The photoelectric astrolabe catalogue of Yunnan Observatory (YPAC).
The positions of 53 FK5, 70 FK5 Extension and 486 GC stars are given forthe equator and equinox J2000.0 and for the mean observation epoch ofeach star. They are determined with the photoelectric astrolabe ofYunnan Observatory. The internal mean errors in right ascension anddeclination are +/- 0.046" and +/- 0.059", respectively. The meanobservation epoch is 1989.51.

On the nature of the AM phenomenon or on a stabilization and the tidal mixing in binaries. I. Orbital periods and rotation.
The paper casts a questioning eye on the unique role of the diffusiveparticle transport mechanism in explaining the Am phenomenon and arguesthat the so-called tidal effects might be of great importance incontrolling diffusion processes. A short period cutoff at =~1.2d as wellas a 180-800d gap were found in the orbital period distribution (OPD) ofAm binaries. The existence of the former can be ascribed to the state ofthe primaries with the almost-filled Roche lobes. The latter couldresult from the combined effects of the diffusion, tidal mixing andstabilization processes. Because the tidal mixing might surpassdiffusion in the binaries with the orbital periods P_orb_ less thanseveral hundred days and might thus sustain the He convection zone,which would otherwise disappear, no Am stars should lie below thisboundary. The fact that they are nevertheless seen there implies theexistence of some stabilization mechanism (as, e.g., that recentlyproposed by Tassoul & Tassoul 1992) for the binaries with orbitalperiods less than 180d. Further evidence is given to the fact that theOPD for the Am and the normal binaries with an A4-F1 primary arecomplementary to each other, from which it stems that Am stars are closeto the main sequence. There are, however, indications that they haveslightly larger radii (2.1-3 Rsun_) than expected for theirspectral type. The generally accepted rotational velocity cutoff at=~100km/s is shown to be of little value when applied on Am binaries ashere it is not a single quantity but, in fact, a function of P_orb_whose shape is strikingly similar to that of the curves of constantmetallicity as ascertained from observations. This also leads to thewell known overlap in rotational velocities of the normal and Am starsfor 402.5d.We have exploited this empirical cutoff function to calibrate thecorresponding turbulent diffusion coefficient associated with tidalmixing, having found out that the computed form of the lines of constantturbulence fits qualitatively the empirical shape of the curves ofconstant metallicity. As for larger orbital periods(20d55km/s found by Burkhart(1979) would then be nothing but a manifestation of insufficientlypopulated corresponding area of larger P_orb_.

The Relation between Rotational Velocities and Spectral Peculiarities among A-Type Stars
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995ApJS...99..135A&db_key=AST

Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue.
We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.

Radio continuum emission from stars: a catalogue update.
An updated version of my catalogue of radio stars is presented. Somestatistics and availability are discussed.

The calibration of uvbyβ photometry for B, A and F stars. I. Fundamental atmospheric parameters.
We present an investigation into the determination of fundamental valuesof T_eff_ and logg. A re-evaluation of the fundamental values of T_eff_determined by Code et al. using modern flux measurements is presented,but there are no significant changes. A determination of fundamentalvalues of T_eff_ for four binary systems with fundamental logg valueshas been performed. Medium-resolution Hβ profiles of thefundamental stars have been obtained and compared to theoreticalprofiles in order to provide estimates of the parameters that have notbeen obtained in a fundamental manner. We have calculated a table ofsynthetic β indices which explicitly include the effects ofmetal-line blocking. We find that these β indices are in goodagreement with the photometric values. A comparison of theoretical uvbycolours is also presented, and found to be in very good agreement withthe photometric colours.

Effective Temperature Bolometric Correction and Mass Calibration of O-F
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1994MNRAS.268..119B&db_key=AST

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Ηνίοχος
Right ascension:06h32m27.20s
Declination:+32°27'17.0"
Apparent magnitude:5.87
Distance:84.317 parsecs
Proper motion RA:-26.6
Proper motion Dec:-16.5
B-T magnitude:6.05
V-T magnitude:5.853

Catalogs and designations:
Proper NamesWWAurigae
HD 1989HD 46052
TYCHO-2 2000TYC 2426-345-1
USNO-A2.0USNO-A2 1200-04896603
BSC 1991HR 2372
HIPHIP 31173

→ Request more catalogs and designations from VizieR