Home     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Astro Photo     The Collection     Forum     Blog New!     FAQ     Login  
→ Adopt this star  

TYC 3778-1951-1


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Two distinct halo populations in the solar neighborhood. III. Evidence from stellar ages and orbital parameters
Context. In Papers I and II of this series, we have found clearindications of the existence of two distinct populations of stars in thesolar neighborhood belonging to the metal-rich end of the halometallicity distribution function. Based on high-resolution, high S/Nspectra, it is possible to distinguish between "high-alpha" and"low-alpha" components using the [?/Fe] versus [Fe/H] diagram. Aims: Precise relative ages and orbital parameters are determined for67 halo and 16 thick-disk stars having metallicities in the range -1.4< [Fe/H] < -0.4 to better understand the context of the two halopopulations in the formation and evolution of the Galaxy. Methods: Ages are derived by comparing the positions of stars in the logTeff-log g diagram with isochrones from the Y2models interpolated to the exact [Fe/H] and [?/Fe] values of eachstar. The stellar parameters have been adopted from the precedingspectroscopic analyses, but possible systematic errors inTeff and log g are considered and corrected. With spacevelocities from Paper I as initial conditions, orbital integrations havebeen carried out using a detailed, observationally constrainedMilky Way model including a bar and spiral arms. Results: The "high-alpha" halo stars have ages 2-3 Gyr larger thanthe "low-alpha" ones, with some probability that the thick-disk starshave ages intermediate between these two halo components. The orbitalparameters show very distinct differences between the "high-alpha" and"low-alpha" halo stars. The "low-alpha" ones have rmax's to30-40 kpc, zmax's to ?18 kpc, and emax'sclumped at values greater than 0.85, while the "high-alpha" ones,rmax's to about 16 kpc, zmax's to 6-8 kpc, andemax values more or less uniformly distributed over 0.4-1.0. Conclusions: A dual in situ-plus-accretion formation scenariobest explains the existence and characteristics of these two metal-richhalo populations, but one remaining defect is that this model is notconsistent regarding the rmax's obtained for the in situ"high-alpha" component; the predicted values are too small. It appearsthat ? Cen may have contributed in asignificant way to the existence of the "low-alpha" component; recentmodels, including dynamical friction and tidal stripping, have producedresults consistent with the present mass and orbital characteristics of? Cen, while at the same time includingextremes in the orbital parameters as great as those of the "low-alpha"component.Based on observations made with the Nordic Optical Telescope on LaPalma, and on data from the European Southern Observatory ESO/ST-ECFScience Archive Facility (programmes 65.L-0507, 67.D-0086, 67.D-0439,68.D-0094, 68.B-0475, 69.D-0679, 70.D-0474, 71.B-0529, 72.B-0585,76.B-0133 and 77.B-0507).Tables 1 and 4 are available in electronic format http://www.aanda.org.

Beryllium and Alpha-element Abundances in a Large Sample of Metal-poor Stars
The light elements, Li, Be, and B, provide tracers for many aspects ofastronomy including stellar structure, Galactic evolution, andcosmology. We have made observations of Be in 117 metal-poor starsranging in metallicity from [Fe/H] = -0.5 to -3.5 with KeckI/HIRES. Our spectra are high resolution (~42,000) and high signal tonoise (the median is 106 per pixel). We have determined the stellarparameters spectroscopically from lines of Fe I, Fe II, Ti I, and Ti II.The abundances of Be and O were derived by spectrum synthesistechniques, while abundances of Fe, Ti, and Mg were found from manyspectral line measurements. There is a linear relationship between[Fe/H] and A(Be) with a slope of +0.88 ± 0.03 over three ordersof magnitude in [Fe/H]. We find that Be is enhanced relative to Fe;[Be/Fe] is +0.40 near [Fe/H] ~-3.3 and drops to 0.0 near [Fe/H]~-1.7. For the relationship between A(Be) and [O/H], we find agradual change in slope from 0.69 ± 0.13 for the Be-poor/O-poorstars to 1.13 ± 0.10 for the Be-rich/O-rich stars. Inasmuch asthe relationship between [Fe/H] and [O/H] seems robustly linear (slope =+0.75 ± 0.03), we conclude that the slope change in Be versus Ois due to the Be abundance. Much of the Be would have been formed in thevicinity of Type II supernova (SN II) in the early history of the Galaxyand by Galactic cosmic-ray (GCR) spallation in the later eras. AlthoughBe is a by-product of CNO, we have used Ti and Mg abundances asalpha-element surrogates for O in part because O abundances are rathersensitive to both stellar temperature and surface gravity. We find thatA(Be) tracks [Ti/H] very well with a slope of 1.00 ± 0.04. Italso tracks [Mg/H] very well with a slope of 0.88 ± 0.03. We havekinematic information on 114 stars in our sample and they divide equallyinto dissipative and accretive stars. Almost the full range of [Fe/H]and [O/H] is covered in each group. There are distinct differences inthe relationships of A(Be) and [Fe/H] and of A(Be) and [O/H] for thedissipative and the accretive stars. It is likely that the formation ofBe in the accretive stars was primarily in the vicinity of SN II, whilethe Be in the dissipative stars was primarily formed by GCR spallation.We find that Be is not as good a cosmochronometer as Fe. We have found aspread in A(Be) that is valid at the 4? level between [O/H] =-0.5 and -1.0, which corresponds to -0.9 and-1.6 in [Fe/H].

Two distinct halo populations in the solar neighborhood. II. Evidence from stellar abundances of Mn, Cu, Zn, Y, and Ba
Context. Current models of galaxy formation predict that the Galactichalo was assembled hierarchically. By measuring abundance ratios instars it may be possible to identify substructures in the halo resultingfrom this process. Aims: A previous study of 94 dwarf stars with-1.6 < [Fe/H] < -0.4 in the solar neighborhood has revealed theexistence of two distinct halo populations with a systematic differencein [?/Fe] at a given metallicity. In continuation of that work,abundances of Mn, Cu, Zn, Y, and Ba are determined for the same sampleof stars. Methods: Equivalent widths of atomic lines are measuredfrom high resolution VLT/UVES and NOT/FIES spectra and used to deriveabundance ratios from an LTE analysis based on MARCS model atmospheres.The analysis is made relative to two thick-disk stars, HD22879 and HD 76932, such that very precisedifferential values are obtained. Results: Systematic differencesbetween the "high-?" and "low-?" halo populations are foundfor [Cu/Fe], [Zn/Fe], and [Ba/Y], whereas there is no significantdifference in the case of [Mn/Fe]. At a given metallicity, [Cu/Fe] showsa large scatter that is closely correlated with a corresponding scatterin [Na/Fe] and [Ni/Fe]. Conclusions: The metallicity trends of[Cu/Fe], [Zn/Fe], and [Ba/Y] can be explained from existingnucleosynthesis calculations if the high-? stars formed in regionswith such a high star formation rate that only massive stars and type IIsupernovae contributed to the chemical enrichment. The low-?stars, on the other hand, most likely originate from systems with aslower chemical evolution, characterized by additional enrichment fromtype Ia supernovae and low-mass AGB stars.Based on observations made with the Nordic Optical Telescope on LaPalma, and on data from the European Southern Observatory ESO/ST-ECFScience Archive Facility (programs 65.L-0507, 67.D-0086, 67.D-0439,68.D-0094, 68.B-0475, 69.D-0679, 70.D-0474, 71.B-0529, 72.B-0585,76.B-0133 and 77.B-0507).Tables 1, 2, and excerpt of Table 3 areavailable in electronic form at http://www.aanda.orgTables 1, 2, andfull Table 3 are also available at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/530/A15

The Ubiquity of the Rapid Neutron-capture Process
To better characterize the abundance patterns produced by the r-process,we have derived new abundances or upper limits for the heavy elementszinc (Zn, Z= 30), yttrium (Y, Z= 39), lanthanum (La, Z= 57), europium(Eu, Z= 63), and lead (Pb, Z= 82). Our sample of 161 metal-poor starsincludes new measurements from 88 high-resolution and highsignal-to-noise spectra obtained with the Tull Spectrograph on the 2.7 mSmith Telescope at the McDonald Observatory, and other abundances areadopted from the literature. We use models of the s-process inasymptotic giant branch stars to characterize the high Pb/Eu ratiosproduced in the s-process at low metallicity, and our new observationsthen allow us to identify a sample of stars with no detectable s-processmaterial. In these stars, we find no significant increase in the Pb/Euratios with increasing metallicity. This suggests that s-processmaterial was not widely dispersed until the overall Galactic metallicitygrew considerably, perhaps even as high as [Fe/H] =-1.4, in contrastwith earlier studies that suggested a much lower mean metallicity. Weidentify a dispersion of at least 0.5 dex in [La/Eu] in metal-poor starswith [Eu/Fe] <+0.6 attributable to the r-process, suggesting thatthere is no unique "pure" r-process elemental ratio among pairs of rareearth elements. We confirm earlier detections of an anti-correlationbetween Y/Eu and Eu/Fe bookended by stars strongly enriched in ther-process (e.g., CS 22892-052) and those with deficiencies of the heavyelements (e.g., HD 122563). We can reproduce the range of Y/Eu ratiosusing simulations of high-entropy neutrino winds of core-collapsesupernovae that include charged-particle and neutron-capture componentsof r-process nucleosynthesis. The heavy element abundance patterns inmost metal-poor stars do not resemble that of CS 22892-052, but thepresence of heavy elements such as Ba in nearly all metal-poor starswithout s-process enrichment suggests that the r-process is a commonphenomenon.This paper includes data taken at The McDonald Observatory of TheUniversity of Texas at Austin.

Observational evidence for a broken Li Spite plateau and mass-dependent Li depletion
We present NLTE Li abundances for 88 stars in the metallicity range -3.5< [Fe/H] < -1.0. The effective temperatures are based on theinfrared flux method with improved E(B-V) values obtained mostly frominterstellar Na I D lines. The Li abundances were derived through MARCSmodels and high-quality UVES+VLT, HIRES+Keck and FIES+NOT spectra, andcomplemented with reliable equivalent widths from the literature. Theless-depleted stars with [Fe/H] < -2.5 and [Fe/H] > -2.5 fall intotwo well-defined plateaus of ALi = 2.18 (? = 0.04) andALi = 2.27 (? = 0.05), respectively. We show that thetwo plateaus are flat, unlike previous claims for a steep monotonicdecrease in Li abundances with decreasing metallicities. At allmetallicities we uncover a fine-structure in the Li abundances of Spiteplateau stars, which we trace to Li depletion that depends on bothmetallicity and mass. Models including atomic diffusion and turbulentmixing seem to reproduce the observed Li depletion assuming a primordialLi abundance ALi = 2.64, which agrees well with currentpredictions (ALi = 2.72) from standard Big Bangnucleosynthesis. Adopting the Kurucz overshooting model atmospheresincreases the Li abundance by +0.08 dex to ALi = 2.72, whichperfectly agrees with BBN+WMAP.Based in part on observations obtained at the W. M. Keck Observatory,the Nordic Optical Telescope on La Palma, and on data from theHIRES/Keck archive and the European Southern Observatory ESO/ST-ECFScience Archive Facility.Table 1 is only available in electronic form athttp://www.aanda.org

The PASTEL catalogue of stellar parameters
Aims: The PASTEL catalogue is an update of the [Fe/H] catalogue,published in 1997 and 2001. It is a bibliographical compilation ofstellar atmospheric parameters providing (T_eff, log g, [Fe/H])determinations obtained from the analysis of high resolution, highsignal-to-noise spectra, carried out with model atmospheres. PASTEL alsoprovides determinations of the one parameter T_eff based on variousmethods. It is aimed in the future to provide also homogenizedatmospheric parameters and elemental abundances, radial and rotationalvelocities. A web interface has been created to query the catalogue onelaborated criteria. PASTEL is also distributed through the CDS databaseand VizieR. Methods: To make it as complete as possible, the mainjournals have been surveyed, as well as the CDS database, to findrelevant publications. The catalogue is regularly updated with newdeterminations found in the literature. Results: As of Febuary2010, PASTEL includes 30151 determinations of either T_eff or (T_eff,log g, [Fe/H]) for 16 649 different stars corresponding to 865bibliographical references. Nearly 6000 stars have a determination ofthe three parameters (T_eff, log g, [Fe/H]) with a high qualityspectroscopic metallicity.The catalogue can be queried through a dedicated web interface at http://pastel.obs.u-bordeaux1.fr/.It is also available in electronic form at the Centre de DonnéesStellaires in Strasbourg (http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=B/pastel),at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) orvia http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/515/A111

An absolutely calibrated Teff scale from the infrared flux method. Dwarfs and subgiants
Various effective temperature scales have been proposed over the years.Despite much work and the high internal precision usually achieved,systematic differences of order 100 K (or more) among various scales arestill present. We present an investigation based on the infrared fluxmethod aimed at assessing the source of such discrepancies and pin downtheir origin. We break the impasse among different scales by using alarge set of solar twins, stars which are spectroscopically andphotometrically identical to the Sun, to set the absolute zero point ofthe effective temperature scale to within few degrees. Our newlycalibrated, accurate and precise temperature scale applies to dwarfs andsubgiants, from super-solar metallicities to the most metal-poor starscurrently known. At solar metallicities our results validatespectroscopic effective temperature scales, whereas for [Fe/H]? -2.5our temperatures are roughly 100 K hotter than those determined frommodel fits to the Balmer lines and 200 K hotter than those obtained fromthe excitation equilibrium of Fe lines. Empirical bolometric correctionsand useful relations linking photometric indices to effectivetemperatures and angular diameters have been derived. Our results takefull advantage of the high accuracy reached in absolute calibration inrecent years and are further validated by interferometric angulardiameters and space based spectrophotometry over a wide range ofeffective temperatures and metallicities.Table 8 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/512/A54

Two distinct halo populations in the solar neighborhood. Evidence from stellar abundance ratios and kinematics
Aims: Precise abundance ratios are determined for 94 dwarf starswith Teff K, -1.6 < [Fe/H] < -0.4, and distances D? 335 pc. Most of them have halo kinematics, but 16 thick-disk starsare included. Methods: Equivalent widths of atomic lines aremeasured from VLT/UVES and NOT/FIES spectra with resolutions R? 55000 and R ? 40 000, respectively. An LTE abundance analysis basedon MARCS models is applied to derive precise differential abundanceratios of Na, Mg, Si, Ca, Ti, Cr, and Ni with respect to Fe. Results: The halo stars fall into two populations, clearly separated in[?/Fe], where ? refers to the average abundance of Mg, Si,Ca, and Ti. Differences in [Na/Fe] and [Ni/Fe] are also present with aremarkably clear correlation between these two abundance ratios. Conclusions: The “high-?” stars may be ancient disk orbulge stars “heated” to halo kinematics by merging satellitegalaxies or they could have formed as the first stars during thecollapse of a proto-Galactic gas cloud. The kinematics of the“low-?” stars suggest that they have been accretedfrom dwarf galaxies, and that some of them may originate from the? Cen progenitor galaxy.Based on observations made with the Nordic Optical Telescope on LaPalma, and on data from the European Southern Observatory ESO/ST-ECFScience Archive Facility.Tables 3 and 4 are also available in electronicform at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/511/L10Figures5-8 and Tables 1-4 are only available in electronic form at http://www.aanda.org

Speckle interferometry of metal-poor stars in the solar neighborhood. I
We report the results of speckle-interferometric observations of 109high proper-motion metalpoor stars made with the 6-m telescope of theSpecial Astrophysical Observatory of the Russian Academy of Sciences. Weresolve eight objects—G102-20, G191-55, BD+19° 1185A, G89-14,G87-45, G87-47, G111-38, and G114-25—into individual componentsand we are the first to astrometrically resolve seven of these stars.New resolved systems included two triple (G111-38, G87-47) and onequadruple (G89-14) star. The ratio ofsingle-to-binary-to-triple-to-quadruple systems among the stars of oursample is equal to 71:28:6:1.

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

The lithium content of the Galactic Halo stars
Thanks to the accurate determination of the baryon density of theuniverse by the recent cosmic microwave background experiments, updatedpredictions of the standard model of Big Bang nucleosynthesis now yieldthe initial abundance of the primordial light elements withunprecedented precision. In the case of ^7Li, the CMB+SBBN value issignificantly higher than the generally reported abundances for Pop IIstars along the so-called Spite plateau. In view of the crucialimportance of this disagreement, which has cosmological, galactic andstellar implications, we decided to tackle the most critical issues ofthe problem by revisiting a large sample of literature Li data in halostars that we assembled following some strict selection criteria on thequality of the original analyses. In the first part of the paper wefocus on the systematic uncertainties affecting the determination of theLi abundances, one of our main goal being to look for the "highestobservational accuracy achievable" for one of the largest sets of Liabundances ever assembled. We explore in great detail the temperaturescale issue with a special emphasis on reddening. We derive four sets ofeffective temperatures by applying the same colour {T}_eff calibrationbut making four different assumptions about reddening and determine theLTE lithium values for each of them. We compute the NLTE corrections andapply them to the LTE lithium abundances. We then focus on our "best"(i.e. most consistent) set of temperatures in order to discuss theinferred mean Li value and dispersion in several {T}_eff and metallicityintervals. The resulting mean Li values along the plateau for [Fe/H]≤ 1.5 are A(Li)_NLTE = 2.214±0.093 and 2.224±0.075when the lowest effective temperature considered is taken equal to 5700K and 6000 K respectively. This is a factor of 2.48 to 2.81 (dependingon the adopted SBBN model and on the effective temperature range chosento delimit the plateau) lower than the CMB+SBBN determination. We findno evidence of intrinsic dispersion. Assuming the correctness of theCMB+SBBN prediction, we are then left with the conclusion that the Liabundance along the plateau is not the pristine one, but that halo starshave undergone surface depletion during their evolution. In the secondpart of the paper we further dissect our sample in search of newconstraints on Li depletion in halo stars. By means of the Hipparcosparallaxes, we derive the evolutionary status of each of our samplestars, and re-discuss our derived Li abundances. A very surprisingresult emerges for the first time from this examination. Namely, themean Li value as well as the dispersion appear to be lower (althoughfully compatible within the errors) for the dwarfs than for the turnoffand subgiant stars. For our most homogeneous dwarfs-only sample with[Fe/H] ≤ 1.5, the mean Li abundances are A(L)_NLTE = 2.177±0.071 and 2.215±0.074 when the lowest effective temperatureconsidered is taken equal to 5700 K and 6000 K respectively. This is afactor of 2.52 to 3.06 (depending on the selected range in {T}_eff forthe plateau and on the SBBN predictions we compare to) lower than theCMB+SBBN primordial value. Instead, for the post-main sequence stars thecorresponding values are 2.260±0.1 and 2.235±0.077, whichcorrespond to a depletion factor of 2.28 to 2.52. These results,together with the finding that all the stars with Li abnormalities(strong deficiency or high content) lie on or originate from the hotside of the plateau, lead us to suggest that the most massive of thehalo stars have had a slightly different Li history than their lessmassive contemporaries. In turn, this puts strong new constraints on thepossible depletion mechanisms and reinforces Li as a stellartomographer.

A Catalog of Northern Stars with Annual Proper Motions Larger than 0.15" (LSPM-NORTH Catalog)
The LSPM catalog is a comprehensive list of 61,977 stars north of theJ2000 celestial equator that have proper motions larger than 0.15"yr-1 (local-background-stars frame). The catalog has beengenerated primarily as a result of our systematic search for high propermotion stars in the Digitized Sky Surveys using our SUPERBLINK software.At brighter magnitudes, the catalog incorporates stars and data from theTycho-2 Catalogue and also, to a lesser extent, from the All-SkyCompiled Catalogue of 2.5 million stars. The LSPM catalog considerablyexpands over the old Luyten (Luyten Half-Second [LHS] and New LuytenTwo-Tenths [NLTT]) catalogs, superseding them for northern declinations.Positions are given with an accuracy of <~100 mas at the 2000.0epoch, and absolute proper motions are given with an accuracy of ~8 masyr-1. Corrections to the local-background-stars propermotions have been calculated, and absolute proper motions in theextragalactic frame are given. Whenever available, we also give opticalBT and VT magnitudes (from Tycho-2, ASCC-2.5),photographic BJ, RF, and IN magnitudes(from USNO-B1 catalog), and infrared J, H, and Ks magnitudes(from 2MASS). We also provide an estimated V magnitude and V-J color fornearly all catalog entries, useful for initial classification of thestars. The catalog is estimated to be over 99% complete at high Galacticlatitudes (|b|>15deg) and over 90% complete at lowGalactic latitudes (|b|>15deg), down to a magnitudeV=19.0, and has a limiting magnitude V=21.0. All the northern starslisted in the LHS and NLTT catalogs have been reidentified, and theirpositions, proper motions, and magnitudes reevaluated. The catalog alsolists a large number of completely new objects, which promise to expandvery significantly the census of red dwarfs, subdwarfs, and white dwarfsin the vicinity of the Sun.Based on data mining of the Digitized Sky Surveys (DSSs), developed andoperated by the Catalogs and Surveys Branch of the Space TelescopeScience Institute (STScI), Baltimore.Developed with support from the National Science Foundation (NSF), aspart of the NASA/NSF NStars program.

The Rise of the s-Process in the Galaxy
From newly obtained high-resolution, high signal-to-noise ratio spectrathe abundances of the elements La and Eu have been determined over thestellar metallicity range -3<[Fe/H]<+0.3 in 159 giant and dwarfstars. Lanthanum is predominantly made by the s-process in the solarsystem, while Eu owes most of its solar system abundance to ther-process. The changing ratio of these elements in stars over a widemetallicity range traces the changing contributions of these twoprocesses to the Galactic abundance mix. Large s-process abundances canbe the result of mass transfer from very evolved stars, so to identifythese cases we also report carbon abundances in our metal-poor stars.Results indicate that the s-process may be active as early as[Fe/H]=-2.6, although we also find that some stars as metal-rich as[Fe/H]=-1 show no strong indication of s-process enrichment. There is asignificant spread in the level of s-process enrichment even at solarmetallicity.

Reappraising the Spite Lithium Plateau: Extremely Thin and Marginally Consistent with WMAP Data
The lithium abundance in 62 halo dwarfs is determined from accurateequivalent widths reported in the literature and an improved infraredflux method temperature scale. The Li abundance of 41 plateau stars(those with Teff>6000 K) is found to be independent oftemperature and metallicity, with a star-to-star scatter of only 0.06dex over a broad range of temperatures (6000K

Empirically Constrained Color-Temperature Relations. II. uvby
A new grid of theoretical color indices for the Strömgren uvbyphotometric system has been derived from MARCS model atmospheres and SSGsynthetic spectra for cool dwarf and giant stars having-3.0<=[Fe/H]<=+0.5 and 3000<=Teff<=8000 K. Atwarmer temperatures (i.e., 8000-2.0. To overcome thisproblem, the theoretical indices at intermediate and high metallicitieshave been corrected using a set of color calibrations based on fieldstars having well-determined distances from Hipparcos, accurateTeff estimates from the infrared flux method, andspectroscopic [Fe/H] values. In contrast with Paper I, star clustersplayed only a minor role in this analysis in that they provided asupplementary constraint on the color corrections for cool dwarf starswith Teff<=5500 K. They were mainly used to test thecolor-Teff relations and, encouragingly, isochrones thatemploy the transformations derived in this study are able to reproducethe observed CMDs (involving u-v, v-b, and b-y colors) for a number ofopen and globular clusters (including M67, the Hyades, and 47 Tuc)rather well. Moreover, our interpretations of such data are verysimilar, if not identical, with those given in Paper I from aconsideration of BV(RI)C observations for the sameclusters-which provides a compelling argument in support of thecolor-Teff relations that are reported in both studies. Inthe present investigation, we have also analyzed the observedStrömgren photometry for the classic Population II subdwarfs,compared our ``final'' (b-y)-Teff relationship with thosederived empirically in a number of recent studies and examined in somedetail the dependence of the m1 index on [Fe/H].Based, in part, on observations made with the Nordic Optical Telescope,operated jointly on the island of La Palma by Denmark, Finland, Iceland,Norway, and Sweden, in the Spanish Observatorio del Roque de losMuchachos of the Instituto de Astrofisica de Canarias.Based, in part, on observations obtained with the Danish 1.54 mtelescope at the European Southern Observatory, La Silla, Chile.

Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog
We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.

A Survey of Proper-Motion Stars. XVI. Orbital Solutions for 171 Single-lined Spectroscopic Binaries
We report 25,563 radial velocity measurements for 1359 single-linedstars in the Carney-Latham sample of 1464 stars selected for high propermotion. For 171 of these, we present spectroscopic orbital solutions. Wefind no obvious difference between the binary characteristics in thehalo and the disk populations. The observed frequency is the same, andthe period distributions are consistent with the hypothesis that the twosets of binaries were drawn from the same parent population. Thissuggests that metallicity in general, and radiative opacities inparticular, have little influence over the fragmentation process thatleads to short-period binaries. All the binaries with periods shorterthan 10 days have nearly circular orbits, while the binaries withperiods longer than 20 days exhibit a wide range of eccentricities and amedian value of 0.37. For the metal-poor high-velocity halo binaries inour sample, the transition from circular to eccentric orbits appears tooccur at about 20 days, supporting the conclusion that tidalcircularization on the main sequence is important for the oldestbinaries in the Galaxy. Some of the results presented here usedobservations made with the Multiple Mirror Telescope, a joint facilityof the Smithsonian Institution and the University of Arizona.

Revised Coordinates and Proper Motions of the Stars in the Luyten Half-Second Catalog
We present refined coordinates and proper-motion data for the highproper-motion (HPM) stars in the Luyten Half-Second (LHS) catalog. Thepositional uncertainty in the original Luyten catalog is typicallygreater than 10" and is often greater than 30". We have used the digitalscans of the POSS I and POSS II plates to derive more accurate positionsand proper motions of the objects. Out of the 4470 candidates in the LHScatalog, 4323 objects were manually reidentified in the POSS I and POSSII scans. A small fraction of the stars were not found because of thelack of finder charts and digitized POSS II scans. The uncertainties inthe revised positions are typically ~2" but can be as high as ~8" in afew cases, which is a large improvement over the original data.Cross-correlation with the Tycho-2 and Hipparcos catalogs yielded 819candidates (with mR<~12). For these brighter sources, theposition and proper-motion data were replaced with the more accurateTycho-2/Hipparcos data. In total, we have revised proper-motionmeasurements and coordinates for 4040 stars and revised coordinates for4330 stars. The electronic version of the paper5 contains the updated information on all 4470stars in the LHS catalog.

Abundances and Evolution of Lithium in the Galactic Halo and Disk
We have measured the Li abundance of 18 stars with -2<~[Fe/H]<~-1and 6000<~Teff<~6400 K, a parameter range that waspoorly represented in previous studies. We examine the Galactic chemicalevolution (GCE) of this element, combining these data with previoussamples of turnoff stars over the full range of halo metallicities. Wefind that A(Li) increases from a level of ~2.10 at [Fe/H]=-3.5 to ~2.40at [Fe/H]=-1.0, where A(Li)=log10(n(Li)/n(H))+12.00. We comparethe observations with several GCE calculations, including existingone-zone models and a new model developed in the framework ofinhomogeneous evolution of the Galactic halo. We show that Li evolved ata constant rate relative to iron throughout the halo and old disk epochsbut that during the formation of young disk stars, the production of Lirelative to iron increased significantly. These observations can beunderstood in the context of models in which postprimordial Li evolutionduring the halo and old disk epochs is dominated by Galactic cosmic-rayfusion and spallation reactions, with some contribution from theν-process in supernovae. The onset of more efficient Li production(relative to iron) in the young disk coincides with the appearance of Lifrom novae and asymptotic giant branch (AGB) stars. The major challengefacing the models is to reconcile the mild evolution of Li during thehalo and old disk phases with the more efficient production (relative toiron) at [Fe/H]>-0.5. We speculate that cool-bottom processing(production) of Li in low-mass stars may provide an importantlate-appearing source of Li, without attendant Fe production, that mightexplain the Li production in the young disk. Based on observationsobtained with the University College London échelle spectrograph(UCLES) on the Anglo-Australian Telescope (AAT) and the Utrechtéchelle spectrograph (UES) on the William Herschel Telescope(WHT).

Lithium abundances in metal-poor stars. I. New observations
We present the lithium measurements of a continuing programme of lightelement abundances in metal-poor stars. New equivalent widths of the Lii lambda 670.8 nm resonance line in 67 metal-poor stars covering themetallicity range -3.5 <= [Fe/H] <= -0.4 are reported. For abouthalf of this sample, the observations presented here represent the firstmeasurement of the Li i line. The sample allowed a statisticalcomparison with previous measurements from other authors and a study ofthe consistency and reliability of the quoted error bars. This papershows that for most of the stars these error bars are good estimates ofthe true uncertainties associated with the determination of theequivalent widths of the Li i line. However, about 20% of the stars withtwo or more independent measurements show discrepancies in the Li iequivalent widths; in these cases, other sources of uncertainty notproperly taken into account (binarity effects, cosmic rays, imperfectflat-field correction, continuum determination, etc.) could also beimportant. Conclusions on the possible lithium abundance trends versuseffective temperature or metallicity and on any intrinsic scatter shouldbe treated cautiously until their robustness vis-a-vis these additionaluncertainties is proved. Based on observations made with the IsaacNewton and Nordic Optical Telescopes, which are operated on the islandof La Palma by the Isaac Newton Group and the NOT ScientificAssociation, respectively, in the Spanish Observatorio del Roque de losMuchachos of the Instituto de Astrofisica de Canarias.

Uvby-β photometry of high-velocity and metal-poor stars. IX. Effects of orbital chaos in the Galactic halo.
Galactic orbits have been integrated using the Galactic potential modelof Allen & Santillan (1991RMxAA..22..255A) for 280 halo starsidentified in the V_rot_, [Fe/H] diagram. The effects of chaos upontheir orbital structure have been investigated. A "vertical" surface ofsection is defined, where Z is plotted versus z each time the orbitcrosses the cylinder ˜ω=8.5kpc; this surface of sectionallows a more complete visualization of the Galactic orbits in phasespace, a better understanding of the orbital chaos, and a more directcomparison with observations. "Horizontal" surfaces of section andmeridional orbits have also been plotted for all of these halo stars,and have been used to classify the Galactic orbits into the categoriesbox, chaotic, and resonant; 44.3% of the halo orbits are found to showsome evidence of chaos. The observed |W'| velocities of the halo starsgive poor measures of z_max_ for the box orbits, and especially for thechaotic orbits. Regressions of [Fe/H] against R_max_ and z_max_, for thetotal sample and for the chaotic and non-chaotic subsets, show littleevidence for a metallicity gradient in the Galactic halo. The surfacesof section for many of the halo stars (~ a third) show some evidence ofstructure within chaos. Part of this structure is due to the"stickiness" that chaotic orbits experience near the outer KAM tori offamilies of periodic and quasiperiodic orbits. This "stickiness" hasbeen discussed extensively in the literature. The phase-space clumpinessproduced by this "stickiness" may help to explain the "moving groups"found in the solar vicinity and the non-Gaussian velocity distributionsobserved at the Galactic poles. Also, the "confinement" of the chaoticorbits by a 1:1 resonant family of tube orbits, which passes a few kpcabove the Sun, may explain part of the halo duality which has beendetected in several studies, such as those of Hartwick (1987, in TheGalaxy, eds. G.Gilmore & B. Carswell. Reidel, dordrecht, 281) and ofKinman et al. (1994AJ....108.1722K). Histograms of the observed |W'|velocity and of the calculated orbital parameter z_max_ have beenplotted for the 280 halo stars. Structure is seen in both histograms,due mainly to the chaotic orbits; the |W'| histogram is non-Gaussianwith two peaks, and the z_max_ histogram has three peaks. Remarkably thestructure in these two histograms is correlated and can be explained inrelation to the details of the surfaces of section and the "confinement"and "stickiness" phenomena of the chaotic orbits.

A Survey of Proper Motion Stars. XIII. The Halo Population
Based on our expanded sample of metallicities and kinematics for a largesample of stars selected from the Lowell Proper Motion Catalog, we studyseveral questions relating to the halo stellar population(s) in ourGalaxy. For [m/H]≤-1.4, there does not seem to be any variation with[m/H] in the mean values of the V velocity (i.e., angular momentumrelated to that in the disk) or the Galactic orbital eccentricities. Further, in spite of the strong kinematical biases in our sample, starswith very low metallicities are found that have small V velocities (highorbital angular momenta) and low orbital eccentricities. These resultscontradict the model that the metal-poor stars are a single populationthat is only the relic of the earliest stages of the Galaxy's collapse. There are signs that some of the metal-poor stars in the solarneighborhood are due to accretion events and, perhaps, also to theearliest stages of the formation of the Galactic disk. Regardingaccretion, we confirm Majewski's [ApJS, 78, 87 (1992)] finding of aretrograde rotation among stars that reach S kpc or more from the plane. These stars do not show any radial metallicity gradient, and may beyounger on average than dynamically hot, metal-poor stars closer to theplane. These latter stars show net prograde rotation and a radialmetallicity gradient, suggestive of a dissipative process in theearliest stages of disk formation. The correlation between metallicityand perigalacticon found by Ryan & Norris [AJ, 101, 1835 (1991a)]disappears when care is taken to exclude the stars that may have beenaccreted by our Galaxy. The field star results complement those forglobular clusters found by other workers, notably Zinn (1993), whoargued for two populations of metal-poor clusters, one apparently inretrograde rotation with no radial metallicity gradient and slightlyyounger ages, and the other with prograde rotation, a weak radialmetallicity gradient, and slightly older ages. The field stars andglobular clusters do differ slightly, however. Their metallicitydistributions differ, with the field stars showing a larger fraction ofthe most metal-poor stars. This could be caused by accretion of Dracodwarf galaxy-like objects, with very low metallicities and no globularclusters. We see in our data, particularly in the V vs>Rapo< plane, possible signs of large-scale kinematicsubstructure suggestive of specific accretion events. We also see signsfor the Preston et al. [AJ, 108, 538 (1994)] low-metallicity,intermediate kinematics, and younger age stellar population. However,the strength of the signal in our data suggests that a fairly largefraction of its stars may be old. On the other hand, the "away" versus"toward" mystery of Croswell et al. [Al, 93, 1445 (1987)] hasdisappeared: the numbers of stars approaching and receding from theplane agree with expectations. Finally, we point out that the model ofNorris [ApJ, 431, 645 (1994)] for a proto-disk population that is hotterdynamically than the accreted halo components does not agree with ourexpanded data sample. We suggest that the proto-disk component wasdynamically cooler when the mean metallicity was very low.

Determination of effective temperatures for an extended sample of dwarfs and subdwarfs (F0-K5).
We have applied the InfraRed Flux Method (IRFM) to a sample of 475dwarfs and subdwarfs in order to derive their effective temperatureswith a mean accuracy of about 1.5%. We have used the new homogeneousgrid of theoretical model atmosphere flux distributions developed byKurucz (1991, 1993) for the application of the IRFM. The atmosphericparameters of the stars cover, roughly, the ranges:3500K<=T_eff_<=8000K -3.5<=[Fe/H]<=+0.53.5<=log(g)<=5. The monocromatic infrared fluxes at the continuum,and the bolometric fluxes are derived using recent results, whichsatisfy the accuracy requeriments of the work. Photometric calibrationshave been revised and applied to estimate metallicities, although directspectroscopic determinations were preferred when available. The adoptedinfrared absolute flux calibration, based on direct optical measurementsof angular stellar diameters, sets the effective temperatures determinedusing the IRFM on the same scale than those obtained by direct methods.We derive three temperatures, T_J_, T_H_ and T_K_, for each star usingthe monochromatic fluxes at different infrared wavelengths in thephotometric bands J, H, and K. They show good consistency over 4000 K,and no trend with wavelength may be appreciated. We provide a detaileddescription of the steps followed for the application of the IRFM, aswell as the sources of the errors associated to the different inputs ofthe method, and their transmission into the final temperatures. We alsoprovide comparison with previous works.

Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue.
We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.

The general catalogue of trigonometric [stellar] paralaxes
Not Available

Broad band JHK infrared photometry of an extended sample of late type dwarfs and subdwarfs.
The results of a long term programme of broad band JHK photometry, for asample of 360 late type stars, made at the Observatorio del Teide(Tenerife, Spain) are presented. Transformations between thesemagnitudes and those of several currently used systems (CIT (Elias etal. 1982 and Carney 1983), Johnson (Johnson 1966, and Lee 1970), and ESO(Bouchet et al. 1991)) are proposed. A comparison to the narrow-bandsystem of Selby et al. (1988) has been made, in order to check theaccuracy of the photometric system. A mean internal accuracy better than0.02mag in the three bands can be inferred from the comparison to thelarge number of stars in common with Carney (1983), and from thedispersion of the multiple measured stars. The list of standards, thefilter passbands and effective wavelengths, together with correlationsbetween the extinction coefficients, ultimately characterize thephotometric IR system of the Observatorio del Teide (TCS). Data ofcomparable quality previously published have been added in order tocomplete the sample. This way the final sample consists of 550 stars.From the analysis of optical and IR colour:colour diagrams, we maydeduce that the range F0-K0 is properly sampled for0.1>[Fe/H]>-3.0. In the range K0-M4, no reliable photometricestimates of metallicity can be assigned, and only a small number ofstars have spectroscopic determination of the metallicity. Nevertheless,after kinematical considerations, the stars in this spectral range arealso expected to sample the galactic populations of dwarfs. Themetallicity effects on the IR and optical colour:colour diagrams arebriefly discussed.

A survey of proper motion stars. 12: an expanded sample
We report new photometry and radial velocities for almost 500 stars fromthe Lowell Proper Motion Catalog. We combine these results with ourprior sample and rederive stellar temperatures based on the photometry,reddening, metallicities (using chi squared matching of our 22,500 lowSignal to Noise (S/N) high resolution echelle spectra with a grid ofsynthetic spectra), distances, space motions, and Galactic orbitalparameters for 1269 (kinematics) and 1261 (metallicity) of the 1464stars in the complete survey. The frequency of spectroscopic binariesfor the metal-poor ((m/H) less than or equal to -1.2) stars with periodsshorter than 3000 days is at least 15%. The spectroscopic binaryfrequency for metal-rich stars ((m/H) greater than -0.5) appears to belower, about 9%, but this may be a selection effect. We also discussspecial classes of stars, including treatment of the double-linedspectroscopic binaries, and identification of subgiants. Four possiblenew members of the class of field blue stragglers are noted. We pointout the detection of three possible new white dwarfs, six broad-lined(binary) systems, and discuss briefly the three already knownnitrogen-rich halo dwarfs. The primary result of this paper will beavailable on CD-ROM, in the form of a much larger table.

Ubvy-beta photometry of high-velocity and metal-poor stars. III - Metallicities and ages of the halo stars
The interstellar color excesses, E(b-y) and the metallicities, Fe/Habundance ratio, are determined for the 711 high-velocity and metal-poorstars in the catalog of ubvy-beta photometry compiled by Schuster andNissen (1988). It is found that 220 of these are halo stars and that 15percent of these halo stars have colors that are significantly affectedby interstellar reddening. A minimum age of 18-20 Gyr is determined forthe halo stars. The results suggest that a pressure-supported slowuniform collapse controlled the formation and evolution of the Galaxy.

Space motions of low-mass stars.
Radial-velocity measures are presented for 225 stars, most of which aredwarf K and M stars. The data were obtained with the CfA digitalspeedometer, whose uncertainty is less than 1 km/s. Calibrations ofthree earlier radial-velocity studies and comparisons with three othercontemporary ones lead to the evaluation of the standard error for anindividual star as determined in each investigation. The data from twomasks, matching solar type and M type stars, form a ratio that measuresstellar surface temperature quite closely and appear to be useful indetecting the presence of unseen companions. A few previouslyunrecognized binaries have been detected; those with most certaintyinclude stars nos. 366B, 453, and 46A of the McCormick lists of dwarfstars.

Four-color UVBY and H-beta photometry of high-velocity and metal-poor stars. I - The catalogue of observations
A catalog of four-color uvby and H-beta photometry for 711 high-velocityand metal-poor stars is given. The selection of the stars and theobserving and reduction techniques used to obtain these data arediscussed. The photometry has been transformed closely onto the standarduvby-beta system. The errors of the data have been estimated using bothinternal and external comparisons. The data are uniform over the sky;that is, there are no significant north-south differences. For the largemajority of stars the mean errors of V, m1, c1, and beta are less than +or - 0.008 mag, and the error of b-y is less than + or - 0.005 mag.Values of V, b-y and beta and rough photometric classifications aregiven for 63 red and/or evolved stars that fall outside the range of thephotometric transformations.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Λυγξ
Right ascension:06h47m44.94s
Declination:+58°38'34.6"
Apparent magnitude:10.353
Proper motion RA:-6.1
Proper motion Dec:-473.3
B-T magnitude:10.779
V-T magnitude:10.389

Catalogs and designations:
Proper Names
TYCHO-2 2000TYC 3778-1951-1
HIPHIP 32567

→ Request more catalogs and designations from VizieR