Home     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Astro Photo     The Collection     Forum     Blog New!     FAQ     Login  
→ Adopt this star  

HD 3008


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Halo Star Streams in the Solar Neighborhood
We have assembled a sample of halo stars in the solar neighborhood tolook for halo substructure in velocity and angular momentum space. Oursample (231 stars) includes red giants, RR Lyrae variable stars, and redhorizontal branch stars within 2.5 kpc of the Sun with [Fe/H] less than-1.0. It was chosen to include stars with accurate distances, spacevelocities, and metallicities, as well as well-quantified errors. Withour data set, we confirm the existence of the streams found by Helmi andcoworkers, which we refer to as the H99 streams. These streams have adouble-peaked velocity distribution in the z-direction (out of theGalactic plane). We use the results of modeling of the H99 streams byHelmi and collaborators to test how one might use vz velocityinformation and radial velocity information to detect kinematicsubstructure in the halo. We find that detecting the H99 streams withradial velocities alone would require a large sample (e.g.,approximately 150 stars within 2 kpc of the Sun and within 20° ofthe Galactic poles). In addition, we use the velocity distribution ofthe H99 streams to estimate their age. From our model of the progenitorof the H99 streams, we determine that it was accreted between 6 and 9Gyr ago. The H99 streams have [α/Fe] abundances similar to otherhalo stars in the solar neighborhood, suggesting that the gas thatformed these stars were enriched mostly by Type II supernovae. We havealso discovered in angular momentum space two other possiblesubstructures, which we refer to as the retrograde and progradeoutliers. The retrograde outliers are likely to be halo substructure,but the prograde outliers are most likely part of the smooth halo. Theretrograde outliers have significant structure in the vφdirection and show a range of [α/Fe], with two having low[α/Fe] for their [Fe/H]. The fraction of substructure stars in oursample is between 5% and 7%. The methods presented in this paper can beused to exploit the kinematic information present in future largedatabases like RAVE, SDSS-II/SEGUE, and Gaia.

Galactic model parameters for field giants separated from field dwarfs by their 2MASS and V apparent magnitudes
We present a method which separates field dwarfs and field giants bytheir 2MASS and V apparent magnitudes. This method is based onspectroscopically selected standards and is hence reliable. We appliedit to stars in two fields, SA 54 and SA 82, and we estimated a full setof Galactic model parameters for giants including their total localspace density. Our results are in agreement with the ones given in therecent literature.

Estimation of Carbon Abundances in Metal-Poor Stars. I. Application to the Strong G-Band Stars of Beers, Preston, and Shectman
We develop and test a method for the estimation of metallicities([Fe/H]) and carbon abundance ratios ([C/Fe]) for carbon-enhancedmetal-poor (CEMP) stars based on the application of artificial neuralnetworks, regressions, and synthesis models to medium-resolution (1-2Å) spectra and J-K colors. We calibrate this method by comparisonwith metallicities and carbon abundance determinations for 118 starswith available high-resolution analyses reported in the recentliterature. The neural network and regression approaches make use of apreviously defined set of line-strength indices quantifying the strengthof the Ca II K line and the CH G band, in conjunction with J-K colorsfrom the Two Micron All Sky Survey Point Source Catalog. The use ofnear-IR colors, as opposed to broadband B-V colors, is required becauseof the potentially large affect of strong molecular carbon bands onbluer color indices. We also explore the practicality of obtainingestimates of carbon abundances for metal-poor stars from the spectralinformation alone, i.e., without the additional information provided byphotometry, as many future samples of CEMP stars may lack such data. Wefind that although photometric information is required for theestimation of [Fe/H], it provides little improvement in our derivedestimates of [C/Fe], and hence, estimates of carbon-to-iron ratios basedsolely on line indices appear sufficiently accurate for most purposes.Although we find that the spectral synthesis approach yields the mostaccurate estimates of [C/Fe], in particular for the stars with thestrongest molecular bands, it is only marginally better than is obtainedfrom the line index approaches. Using these methods we are able toreproduce the previously measured [Fe/H] and [C/Fe] determinations withan accuracy of ~0.25 dex for stars in the metallicity interval-5.5<=[Fe/H]<=-1.0 and with 0.2<=(J-K)0<=0.8. Athigher metallicity, the Ca II K line begins to saturate, especially forthe cool stars in our program, and hence, this approach is not useful insome cases. As a first application, we estimate the abundances of [Fe/H]and [C/Fe] for the 56 stars identified as possibly carbon-rich, relativeto stars of similar metal abundance, in the sample of ``strong G-band''stars discussed by Beers, Preston, and Shectman.

The Rise of the s-Process in the Galaxy
From newly obtained high-resolution, high signal-to-noise ratio spectrathe abundances of the elements La and Eu have been determined over thestellar metallicity range -3<[Fe/H]<+0.3 in 159 giant and dwarfstars. Lanthanum is predominantly made by the s-process in the solarsystem, while Eu owes most of its solar system abundance to ther-process. The changing ratio of these elements in stars over a widemetallicity range traces the changing contributions of these twoprocesses to the Galactic abundance mix. Large s-process abundances canbe the result of mass transfer from very evolved stars, so to identifythese cases we also report carbon abundances in our metal-poor stars.Results indicate that the s-process may be active as early as[Fe/H]=-2.6, although we also find that some stars as metal-rich as[Fe/H]=-1 show no strong indication of s-process enrichment. There is asignificant spread in the level of s-process enrichment even at solarmetallicity.

He I λ10830 Absorption in Metal-Poor Red Giants: Probing Fast Chromospheric Outflows
We present the results of a search for near-IR chromospheric He Iabsorption in 10 metal-poor red giants using high-resolution spectraobtained with NIRSPEC on Keck II. Four of these red giants are in thefield, and six are in the globular cluster M13. Two of the field starsand one of the cluster stars show evidence for He I absorption that isconsistent with chromospheric outflow velocities ranging from 30 to 140km s-1. If identified with a wind, the velocity found in theM13 red giant IV-15 (30 km s-1) is comparable to the escapevelocity of the cluster core, suggesting that such winds may beeffective in clearing out the interstellar medium of globular clusters.Absorption is confined to stars with Teff>~4600 K andMV fainter than -1.5. Since previous studies have foundHα and Ca II K2 emission line profiles indicative ofwinds in metal-poor giants brighter than this limit, the mechanismresponsible for He I absorption in metal-poor red giants apparentlyoperates less effectively in the cooler and brighter stars. On the otherhand, the He I line extends the detection of mass outflows further downthe giant branch of metal-poor stars than the Hα observations.Data presented herein were obtained at the W. M. Keck Observatory, whichis operated as a scientific partnership among the California Instituteof Technology, the University of California, and the NationalAeronautics and Space Administration. The Observatory was made possibleby the generous financial support of the W. M. Keck Foundation.

Stellar Chemical Signatures and Hierarchical Galaxy Formation
To compare the chemistries of stars in the Milky Way dwarf spheroidal(dSph) satellite galaxies with stars in the Galaxy, we have compiled alarge sample of Galactic stellar abundances from the literature. Whenkinematic information is available, we have assigned the stars tostandard Galactic components through Bayesian classification based onGaussian velocity ellipsoids. As found in previous studies, the[α/Fe] ratios of most stars in the dSph galaxies are generallylower than similar metallicity Galactic stars in this extended sample.Our kinematically selected stars confirm this for the Galactic halo,thin-disk, and thick-disk components. There is marginal overlap in thelow [α/Fe] ratios between dSph stars and Galactic halo stars onextreme retrograde orbits (V<-420 km s-1), but this is notsupported by other element ratios. Other element ratios compared in thispaper include r- and s-process abundances, where we find a significantoffset in the [Y/Fe] ratios, which results in a large overabundance in[Ba/Y] in most dSph stars compared with Galactic stars. Thus, thechemical signatures of most of the dSph stars are distinct from thestars in each of the kinematic components of the Galaxy. This resultrules out continuous merging of low-mass galaxies similar to these dSphsatellites during the formation of the Galaxy. However, we do not ruleout very early merging of low-mass dwarf galaxies, since up to one-halfof the most metal-poor stars ([Fe/H]<=-1.8) have chemistries that arein fair agreement with Galactic halo stars. We also do not rule outmerging with higher mass galaxies, although we note that the LMC and theremnants of the Sgr dwarf galaxy are also chemically distinct from themajority of the Galactic halo stars. Formation of the Galaxy's thickdisk by heating of an old thin disk during a merger is also not ruledout; however, the Galaxy's thick disk itself cannot be comprised of theremnants from a low-mass (dSph) dwarf galaxy, nor of a high-mass dwarfgalaxy like the LMC or Sgr, because of differences in chemistry.The new and independent environments offered by the dSph galaxies alsoallow us to examine fundamental assumptions related to thenucleosynthesis of the elements. The metal-poor stars ([Fe/H]<=-1.8)in the dSph galaxies appear to have lower [Ca/Fe] and [Ti/Fe] than[Mg/Fe] ratios, unlike similar metallicity stars in the Galaxy.Predictions from the α-process (α-rich freeze-out) would beconsistent with this result if there have been a lack of hypernovae indSph galaxies. The α-process could also be responsible for thevery low Y abundances in the metal-poor stars in dSph's; since [La/Eu](and possibly [Ba/Eu]) are consistent with pure r-process results, thelow [Y/Eu] suggests a separate r-process site for this light(first-peak) r-process element. We also discuss SNe II rates and yieldsas other alternatives, however. In stars with higher metallicities([Fe/H]>=-1.8), contributions from the s-process are expected; [(Y,La, and Ba)/Eu] all rise as expected, and yet [Ba/Y] is still muchhigher in the dSph stars than similar metallicity Galactic stars. Thisresult is consistent with s-process contributions from lower metallicityAGB stars in dSph galaxies, and is in good agreement with the slowerchemical evolution expected in the low-mass dSph galaxies relative tothe Galaxy, such that the build-up of metals occurs over much longertimescales. Future investigations of nucleosynthetic constraints (aswell as galaxy formation and evolution) will require an examination ofmany stars within individual dwarf galaxies.Finally, the Na-Ni trend reported in 1997 by Nissen & Schuster isconfirmed in Galactic halo stars, but we discuss this in terms of thegeneral nucleosynthesis of neutron-rich elements. We do not confirm thatthe Na-Ni trend is related to the accretion of dSph galaxies in theGalactic halo.

Comparing Deep Mixing in Globular Cluster and Halo Field Giants: Carbon Abundance Data from the Literature
The behavior of carbon abundance as a function of luminosity is used tocompare the rates of deep mixing within red giants of four globularclusters and the Galactic halo field population. Measurements of [C/Fe]for the clusters M92, NGC 6397, M3, and M13 have been compiled from theliterature, together with the Gratton et al. data for halo field stars.Plots of [C/Fe] versus absolute visual magnitude show that forMV<+1.6 the rate of decline of carbon abundance withincreasing luminosity on the red giant branch isd[C/Fe]/dMV~0.22+/-0.03 among the field stars, as well as inM92, NGC 6397, and M3. Among giants fainter than MV=+1.6 thevariation of [C/Fe] with absolute magnitude is much less. The dataindicate that the rate at which deep mixing introduces carbon-depletedmaterial into the convective envelopes of field halo stars during theupper red giant branch phase of evolution is similar to that of manyglobular cluster giants. The notable exception appears to be M13, inwhich stars exhibit deep mixing at a greater rate; this may account forthe high incidence of very low oxygen abundances among the most luminousgiants in M13 in comparison to M3.

Oxygen line formation in late-F through early-K disk/halo stars. Infrared O I triplet and [O I] lines
In order to investigate the formation of O I 7771-5 and [O I] 6300/6363lines, extensive non-LTE calculations for neutral atomic oxygen werecarried out for wide ranges of model atmosphere parameters, which areapplicable to early-K through late-F halo/disk stars of variousevolutionary stages.The formation of the triplet O I lines was found to be well described bythe classical two-level-atom scattering model, and the non-LTEcorrection is practically determined by the parameters of theline-transition itself without any significant relevance to the detailsof the oxygen atomic model. This simplifies the problem in the sensethat the non-LTE abundance correction is essentially determined only bythe line-strength (Wlambda ), if the atmospheric parametersof Teff, log g, and xi are given, without any explicitdependence of the metallicity; thus allowing a useful analytical formulawith tabulated numerical coefficients. On the other hand, ourcalculations lead to the robust conclusion that LTE is totally valid forthe forbidden [O I] lines.An extensive reanalysis of published equivalent-width data of O I 7771-5and [O I] 6300/6363 taken from various literature resulted in theconclusion that, while a reasonable consistency of O I and [O I]abundances was observed for disk stars (-1 <~ [Fe/H] <~ 0), theexistence of a systematic abundance discrepancy was confirmed between OI and [O I] lines in conspicuously metal-poor halo stars (-3 <~[Fe/H] <~ -1) without being removed by our non-LTE corrections, i.e.,the former being larger by ~ 0.3 dex at -3 <~ [Fe/H] <~ -2.An inspection of the parameter-dependence of this discordance indicatesthat the extent of the discrepancy tends to be comparatively lessenedfor higher Teff/log g stars, suggesting the preference ofdwarf (or subgiant) stars for studying the oxygen abundances ofmetal-poor stars.Tables 2, 5, and 7 are only available in electronic form, at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/402/343 and Table\ref{tab3} is only available in electronic form athttp://www.edpsciences.org

Spectroscopic Binaries, Velocity Jitter, and Rotation in Field Metal-poor Red Giant and Red Horizontal-Branch Stars
We summarize 2007 radial velocity measurements of 91 metal-poor fieldred giants. Excluding binary systems with orbital solutions, ourcoverage averages 13.7 yr per star, with a maximum of 18.0 yr. We reportfour significant findings. (1) Sixteen stars are found to bespectroscopic binaries, and we present orbital solutions for 14 of them.The spectroscopic binary frequency of the metal-poor red giants, with[Fe/H]<=-1.4, for periods less than 6000 days, is 16%+/-4%, which isnot significantly different from that of comparable-metallicity fielddwarfs, 17%+/-2%. The two CH stars in our program, BD -1°2582 and HD135148, are both spectroscopic binaries. (2) Velocity jitter is presentamong about 40% of the giants with MV<=-1.4. The twobest-observed cases, HD 3008 and BD +22°2411, showpseudoperiodicities of 172 and 186 days, longer than any knownlong-period variable in metal-poor globular clusters. Photometricvariability seen in HD 3008 and three other stars showing velocityjitter hints that starspots are the cause. However, the phasing of thevelocity data with the photometry data from Hipparcos is not consistentwith a simple starspot model for HD 3008. We argue against orbitalmotion effects and radial pulsation, so rotational modulation remainsthe best explanation. The implied rotational velocities for HD 3008 andBD +22°2411, both with MV<=-1.4 and R~50Rsolar, exceed 12 km s-1. (3) Including HD 3008and BD +22°2411, we have found signs of significant excess linebroadening in eight of the 17 red giants with MV<=-1.4,which we interpret as rotation. In three cases, BD +30°2034, CD-37°14010, and HD 218732, the rotation is probably induced by tidallocking between axial rotation and the observed orbital motion with astellar companion. But this cannot explain the other five stars in oursample that display signs of significant rotation. This high frequencyof elevated rotational velocities does not appear to be caused bystellar mass transfer or mergers: there are too few main-sequencebinaries with short enough periods. We also note that the lack of anynoticeable increase in mean rotation at the magnitude level of the redgiant branch luminosity function ``bump'' argues against the rapidrotation's being caused by the transport of internal angular momentum tothe surface. Capture of a planetary-mass companion as a red giantexpands in radius could explain the high rotational velocities. (4) Wealso find significant rotation in at least six of the roughly 15 (40%)red horizontal-branch stars in our survey. It is likely that theenhanced rotation seen among a significant fraction of both blue and redhorizontal-branch stars arose when these stars were luminous red giants.Rapid rotation alone therefore appears insufficient cause to populatethe blue side of the horizontal branch. While the largest projectedrotational velocities seen among field blue and red horizontal-branchstars are consistent with their different sizes, neither are consistentwith the large values we find for the largest red giants. This suggeststhat some form of angular momentum loss (and possibly mass loss) hasbeen at work. Also puzzling is the apparent absence of rotation seen infield RR Lyrae variables. Angular momentum transfer and conservation inevolved metal-poor field stars thus pose many interesting questions forthe evolution of low-mass stars.

Three-dimensional Spectral Classification of Low-Metallicity Stars Using Artificial Neural Networks
We explore the application of artificial neural networks (ANNs) for theestimation of atmospheric parameters (Teff, logg, and [Fe/H])for Galactic F- and G-type stars. The ANNs are fed withmedium-resolution (Δλ~1-2 Å) non-flux-calibratedspectroscopic observations. From a sample of 279 stars with previoushigh-resolution determinations of metallicity and a set of (external)estimates of temperature and surface gravity, our ANNs are able topredict Teff with an accuracy ofσ(Teff)=135-150 K over the range4250<=Teff<=6500 K, logg with an accuracy ofσ(logg)=0.25-0.30 dex over the range 1.0<=logg<=5.0 dex, and[Fe/H] with an accuracy σ([Fe/H])=0.15-0.20 dex over the range-4.0<=[Fe/H]<=0.3. Such accuracies are competitive with theresults obtained by fine analysis of high-resolution spectra. It isnoteworthy that the ANNs are able to obtain these results withoutconsideration of photometric information for these stars. We have alsoexplored the impact of the signal-to-noise ratio (S/N) on the behaviorof ANNs and conclude that, when analyzed with ANNs trained on spectra ofcommensurate S/N, it is possible to extract physical parameter estimatesof similar accuracy with stellar spectra having S/N as low as 13. Takentogether, these results indicate that the ANN approach should be ofprimary importance for use in present and future large-scalespectroscopic surveys.

Neutron-Capture Elements in the Early Galaxy: Insights from a Large Sample of Metal-poor Giants
New abundances for neutron-capture (n-capture) elements in a largesample of metal-poor giants from the Bond survey are presented. Thespectra were acquired with the KPNO 4 m echelle and coudé feedspectrographs, and have been analyzed using LTE fine-analysis techniqueswith both line analysis and spectral synthesis. Abundances of eightn-capture elements (Sr, Y, Zr, Ba, La, Nd, Eu, and Dy) in 43 stars havebeen derived from blue (λλ4070-4710, R~20,000, S/Nratio~100-200) echelle spectra and red (λλ6100-6180,R~22,000, S/N ratio~100-200) coudé spectra, and the abundance ofBa only has been derived from the red spectra for an additional 27stars. Overall, the abundances show clear evidence for a largestar-to-star dispersion in the heavy element-to-iron ratios. Thiscondition must have arisen from individual nucleosynthetic events inrapidly evolving halo progenitors that injected newly manufacturedn-capture elements into an inhomogeneous early Galactic halointerstellar medium. The new data also confirm that at metallicities[Fe/H]<~-2.4, the abundance pattern of the heavy (Z>=56) n-captureelements in most giants is well-matched to a scaled solar systemr-process nucleosynthesis pattern. The onset of the main r-process canbe seen at [Fe/H]~-2.9 this onset is consistent with the suggestion thatlow mass Type II supernovae are responsible for the r-process.Contributions from the s-process can first be seen in some stars withmetallicities as low as [Fe/H]~-2.75 and are present in most stars withmetallicities [Fe/H]>-2.3. The appearance of s-process contributionsas metallicity increases presumably reflects the longer stellarevolutionary timescale of the (low-mass) s-process nucleosynthesissites. The lighter n-capture elements (Sr-Y-Zr) are enhanced relative tothe heavier r-process element abundances. Their production cannot beattributed solely to any combination of the solar system r- and mains-processes, but requires a mixture of material from the r-process andfrom an additional n-capture process that can operate at early Galactictime. This additional process could be the weak s-process in massive(~25 Msolar) stars, or perhaps a second r-process site, i.e.,different from the site that produces the heavier (Z>=56) n-captureelements.

Kinematics of Metal-poor Stars in the Galaxy. II. Proper Motions for a Large Nonkinematically Selected Sample
We present a revised catalog of 2106 Galactic stars, selected withoutkinematic bias and with available radial velocities, distance estimates,and metal abundances in the range -4.0<=[Fe/H]<=0.0. This updateof the 1995 Beers & Sommer-Larsen catalog includes newly derivedhomogeneous photometric distance estimates, revised radial velocitiesfor a number of stars with recently obtained high-resolution spectra,and refined metallicities for stars originally identified in the HKobjective-prism survey (which account for nearly half of the catalog)based on a recent recalibration. A subset of 1258 stars in this cataloghave available proper motions based on measurements obtained with theHipparcos astrometry satellite or taken from the updated AstrographicCatalogue (second epoch positions from either the Hubble Space TelescopeGuide Star Catalog or the Tycho Catalogue), the Yale/San Juan SouthernProper Motion Catalog 2.0, and the Lick Northern Proper Motion Catalog.Our present catalog includes 388 RR Lyrae variables (182 of which arenewly added), 38 variables of other types, and 1680 nonvariables, withdistances in the range 0.1 to 40 kpc.

Abundances of light elements in metal-poor stars. III. Data analysis and results
We present the results of the analysis of an extensive set of new andliterature high quality data concerning Fe, C, N, O, Na, and Mg. Thisanalysis exploited the T_eff scale determined in Gratton et al. (1996a),and the non-LTE abundance corrections computed in Gratton et al.(1999a). Results obtained with various abundance indices are discussedand compared. Detailed comparison with models of galactic chemicalevolution will be presented in future papers of this series. Our non-LTEanalysis yields the same O abundances from both permitted and forbiddenlines for stars with T_eff >4600 K, in agreement with King (1993),but not with other studies using a lower T_eff -scale for subdwarfs.However, we obtain slightly smaller O abundances for the most luminousmetal-poor field stars than for fainter stars of similar metallicities,an effect attributed to inadequacies of the adopted model atmospheres(Kurucz 1992, with overshooting) for cool stars. We find a nearlyconstant O overundance in metal-poor stars ([Fe/H]<-0.8), at a meanvalue of 0.46+/- 0.02 dex (sigma =0.12, 32 stars), with only a gentleslope with [Fe/H] ( ~ -0.1); this result is different from the steeperslope recently obtained using OH band in the near UV. If only bonafideunmixed stars are considered, C abundances scale with Fe ones (i.e.[C/Fe]~ 0) down to [Fe/H] ~ -2.5. Due to our adoption of a differentT_eff scale, we do not confirm the slight C excess in the most metalpoor disk dwarfs (-0.8<[Fe/H]<-0.4) found in previousinvestigations. Na abundances scale as Fe ones in the high metallicityregime, while metal-poor stars present a Na underabundance. None of thefield stars analyzed belong to the group of O-poor and Na-rich starsobserved in globular clusters. Na is deficient with respect to Mg inhalo and thick disk stars; within these populations, Na deficiency maybe a slow function of [Mg/H]. Solar [Na/Mg] ratios are obtained for thindisk stars. Tables~ 2 to 9 are only available in electronic form at theCDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strabg.fr/Abstract.html

Revised Strömgren metallicity calibration for red giants
A new calibration of the Strömgren (b-y),m_1 diagram in terms ofiron abundance of red giants is presented. This calibration is based ona homogeneous sample of giants in the globular clusters omega Centauri,M 22, and M 55 as well as field giants from the list of Anthony-Twarog& Twarog (\cite{anth98}). Towards high metallicities, the newcalibration is connected to a previous calibration by Grebel &Richtler (\cite{greb92}), which was unsatisfactory for iron abudanceslower than -1.0 dex. The revised calibration is valid for CN-weak/normalred giants in the abundance range of -2.0 <[Fe/H]< 0.0 dex, and acolor range of 0.5 < (b-y) < 1.1 mag. As shown for red giants inomega Centauri, CN-weak stars with Strömgren metallicities higherthan -1.0 dex cannot be distinguished in the (b-y),m_1 diagram fromstars with lower iron abundances but higher CN band strengths. Based ondata collected at the European Southern Observatory, La Silla, Chile

Mixing along the red giant branch in metal-poor field stars
We have determined Li, C, N, O, Na, and Fe abundances, and12C/13C isotopic ratios for a sample of 62 fieldmetal-poor stars in the metallicity range -2<=[Fe/H]<= -1. Starswere selected in order to have accurate luminosity estimates from theliterature, so that evolutionary phases could be clearly determined foreach star. We further enlarged this dataset by adding 43 more starshaving accurate abundances for some of these elements and similarly welldefined luminosities from the literature. This large sample was used toshow that (small mass) lower-RGB stars (i.e. stars brighter than thefirst dredge-up luminosity and fainter than that of the RGB bump) haveabundances of light elements in agreement with predictions fromclassical evolutionary models: only marginal changes occur for CNOelements, while dilution within the convective envelope causes thesurface Li abundance to decrease by a factor of ~ 20. A second, distinctmixing episode occurs in most (perhaps all) small mass metal-poor starsjust after the RGB bump, when the molecular weight barrier left by themaximum inward penetration of the convective shell is canceled by theoutward expansion of the H-burning shell, in agreement with recenttheoretical predictions. In field stars, this second mixing episode onlyreaches regions of incomplete CNO burning: it causes a depletion of thesurface 12C abundance by about a factor of 2.5, and acorresponding increase in the N abundance by about a factor of 4. The12C/13C is lowered to about 6 to 10 (close to butdistinctly higher than the equilibrium value of 3.5), while practicallyall remaining Li is burnt. However an O-Na anti-correlation such astypically observed amongst globular cluster stars, is not present infield stars. None of the 29 field stars more evolved than the RGB bump(including 8 RHB stars) shows any sign of an O depletion or Naenhancement. This means that the second mixing episode is not deepenough to reach regions were ON-burning occurs in field stars. Based inpart on observations made at the ESO La Silla ObservatoryTables 1, 2, 3, 5 and 6 are available in electronic form only at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

The effective temperature scale of giant stars (F0-K5). II. Empirical calibration of Teff versus colours and [Fe/H]
We present calibrations of the effective temperatures of giant starsversus [Fe/H] and colours (U-V), (B-V), (R-I), (V-R), (V-I), (V-K),(J-H), (J-K), (I-K), (V-L'), (b-y) and (u-b). These calibrations arebased on a large sample of field and globular cluster stars whichroughly cover spectral types from F0 to K5. Their effectivetemperatures, scaled to direct Teff determinations viareliable angular diameter measurements, were derived by applying theinfrared flux method. The empirical relations have been fitted topolynomials of the form theta_ {eff} = P(colour,[Fe/H]) by using theleast squares method. The precision of the fits ranges from 40 K for(V-K) to 170 K for (J-H). We tabulate intrinsic colours of giant starsin the ranges: 3500 K <= Teff <= 8000 K; -3.0 <=[Fe/H] <= +0.5. We also present the calibration of BC(V) as afunction of log(Teff) and metallicity. Finally, we comparethe resulting scale of temperatures with previous works.

The effective temperature scale of giant stars (F0-K5). I. The effective temperature determination by means of the IRFM
We have applied the InfraRed Flux Method (IRFM) to a sample ofapproximately 500 giant stars in order to derive their effectivetemperatures with an internal mean accuracy of about 1.5% and a maximumuncertainty in the zero point of the order of 0.9%. For the applicationof the IRFM, we have used a homogeneous grid of theoretical modelatmosphere flux distributions developed by \cite[Kurucz (1993)]{K93}.The atmospheric parameters of the stars roughly cover the ranges: 3500 K<= T_eff <= 8000 K; -3.0 <= [Fe/H] <= +0.5; 0.5 <= log(g) <= 3.5. The monochromatic infrared fluxes at the continuum arebased on recent photometry with errors that satisfy the accuracyrequirements of the work. We have derived the bolometric correction ofgiant stars by using a new calibration which takes the effect ofmetallicity into account. Direct spectroscopic determinations ofmetallicity have been adopted where available, although estimates basedon photometric calibrations have been considered for some stars lackingspectroscopic ones. The adopted infrared absolute flux calibration,based on direct optical measurements of stellar angular diameters, putsthe effective temperatures determined in this work in the same scale asthose obtained by direct methods. We have derived up to fourtemperatures, TJ, TH, TK and T_{L'},for each star using the monochromatic fluxes at different infraredwavelengths in the photometric bands J, H, K and L'. They show goodconsistency over 4000 K, and there is no appreciable trend withwavelength, metallicity and/or temperature. We provide a detaileddescription of the steps followed for the application of the IRFM, aswell as the sources of error and their effect on final temperatures. Wealso provide a comparison of the results with previous work.

Rubidium in Metal-deficient Disk and Halo Stars
We report the first extensive study of stellar Rb abundances.High-resolution spectra have been used to determine, or set upper limitson, the abundances of this heavy element and the associated elements Y,Zr, and Ba in 44 dwarfs and giants with metallicities spanning the range-2.0<[Fe/H]<0.0. In metal-deficient stars Rb is systematicallyoverabundant relative to Fe; we find an average [Rb/Fe] of +0.21 for the32 stars with [Fe/H]<-0.5 and measured Rb. This behavior contrastswith that of Y, Zr, and Ba, which, with the exception of three new CHstars (HD 23439A and B and BD +5 deg3640), are consistently slightlydeficient relative to Fe in the same stars; excluding the three CHstars, we find that the stars with [Fe/H]<-0.5 have average [Y/Fe],[Zr/Fe], and [Ba/Fe] of -0.19 (24 stars), -0.12 (28 stars), and -0.06(29 stars), respectively. The different behavior of Rb on the one handand Y, Zr, and Ba on the other can be attributed in part to the factthat in the Sun and in these stars Rb has a large r-process componentwhile Y, Zr, and Ba are mostly s-process elements with only smallr-process components. In addition, the Rb s-process abundance isdependent on the neutron density at the s-processing site. Publishedobservations of Rb in s-process enriched red giants indicate a higherneutron density in the metal-poor giants. These observations imply ahigher s-process abundance for Rb in metal-poor stars. The calculatedcombination of the Rb r-process abundance, as estimated for the stellarEu abundances, and the s-process abundance, as estimated for red giants,accounts satisfactorily for the observed run of [Rb/Fe] with [Fe/H].

Estimation of Stellar Metal Abundance. II. A Recalibration of the Ca II K Technique, and the Autocorrelation Function Method
We have recalibrated a method for the estimation of stellar metalabundance, parameterized as [Fe/H], based on medium-resolution (1-2Å) optical spectra (the majority of which cover the wavelengthrange 3700-4500 Å). The equivalent width of the Ca II K line (3933Å) as a function of [Fe/H] and broadband B-V color, as predictedfrom spectrum synthesis and model atmosphere calculations, is comparedwith observations of 551 stars with high-resolution abundances availablefrom the literature (a sevenfold increase in the number of calibrationstars that were previously available). A second method, based on theFourier autocorrelation function technique first described by Ratnatunga& Freeman, is used to provide an independent estimate of [Fe/H], ascalibrated by comparison with 405 standard-star abundances.Metallicities based on a combination of the two techniques for dwarfsand giants in the color range 0.30<=(B-V)_0<=1.2 exhibit anexternal 1 sigma scatter of approximately 0.10-0.20 dex over theabundance range -4.0<=[Fe/H]<=0.5. Particular attention has beengiven to the determination of abundance estimates at the metal-rich endof the calibration, where our previous attempt suffered from aconsiderable zero-point offset. Radial velocities, accurate toapproximately 10 km s^-1, are reported for all 551 calibration stars.

The 74th Special Name-list of Variable Stars
We present the Name-list introducing GCVS names for 3153 variable starsdiscovered by the Hipparcos mission.

Ca II H and K Photometry on the UVBY System. III. The Metallicity Calibration for the Red Giants
New photometry on the uvby Ca system is presented for over 300 stars.When combined with previous data, the sample is used to calibrate themetallicity dependence of the hk index for cooler, evolved stars. Themetallicity scale is based upon the standardized merger of spectroscopicabundances from 38 studies since 1983, providing an overlap of 122evolved stars with the photometric catalog. The hk index producesreliable abundances for stars in the [Fe/H] range from -0.8 to -3.4,losing sensitivity among cooler stars due to saturation effects athigher [Fe/H], as expected.

On the Use of [Na/Fe] and [alpha/Fe] Ratios and Hipparcos-based (U, V, W) Velocities as Age Indicators among Low-Metallicity Halo Field Giants
We have examined the [Na/Fe] and [Mg/Fe] ratios in a sample of 68 fieldhalo giants with -3 <~ [Fe/H] <~ -1. We recalculated the Galactic(U, V, W) velocity components for these stars, using Hipparcos propermotions and a new Hipparcos-based distance scale. We used these data tosee how the abundance ratios may relate to kinematical substructure inthe Galactic halo. To isolate a set of true halo stars, we eliminatedmetal-weak thick-disk stars, about 10% of our sample. The field halogiants show the expected correlation of Na and Mg abundances, so we canuse Na as a surrogate for Mg and the alpha-elements. The most metal-poorstars show a wider dispersion of [Na/Fe] ratios than do the lessmetal-poor stars; the difference is most striking for stars onretrograde galactic orbits. Some 20% of our retrograde giants and 13% ofall our halo giants have [Na/Fe] <= -0.35 and may be significantlyyounger than the oldest halo objects. Halo giants considered ``young''by this Na abundance criterion show a preference for retrograde orbits.Giants in some globular clusters (e.g., M13) do not exhibit the Mgversus Na correlation found among halo field giants. Instead, they havevery large [Na/Fe] ratios and widely scattered [Mg/Fe] ratios, probablyinduced by deep mixing, which field halo giants apparently do notexperience.

Broad-band JHK(L') photometry of a sample of giants with 0.5 > [Fe/H] > -3
We present the results of a three-year campaign of broad-band photometryin the near-infrared J, H, K and L' bands for a sample of approximately250 giant stars carried out at the Observatorio del Teide (Tenerife,Spain). Transformations of the Telescopio Carlos Sanchez systeminto/from several currently used infrared systems are extended to theredward part of the colour axis. The linearity of our photometric systemin the range -3 mag [Fe/H] >-3. Data of comparable quality previouslypublished have been added to the sample in order to increase thereliability of the relations to be obtained. We also provide mean IRcolours for giant stars according to spectral type.ables 1, 2 and 3 are only available in electronic form via the CDS(anonymous ftp 130.79.128.5 or http://cdsweb.u-strasbg.fr/Abstract.html

Early evolution of the Galactic halo revealed from Hipparcos observations of metal-poor stars
The kinematics of 122 red giant and 124 RR Lyrae stars in the solarneighborhood are studied using accurate measurements of their propermotions obtained by the Hipparcos astrometry satellite, combined withtheir published photometric distances, metal abundances, and radialvelocities. A majority of these sample stars have metal abundances of(Fe/H) = -1 or less and thus represent the old stellar populations inthe Galaxy. The halo component, with (Fe/H) = -1.6 or less, ischaracterized by a lack of systemic rotation and a radially elongatedvelocity ellipsoid. About 16 percent of such metal-poor stars have loworbital eccentricities, and we see no evidence of a correlation between(Fe/H) and e. Based on the model for the e-distribution of orbits, weshow that this fraction of low-e stars for (Fe/H) = -1.6 or less isexplained by the halo component alone, without introducing the extradisk component claimed by recent workers. This is also supported by theabsence of a significant change in the e-distribution with height fromthe Galactic plane. In the intermediate-metallicity range, we find thatstars with disklike kinematics have only modest effects on thedistributions of rotational velocities and e for the sample at absolutevalue of z less than 1 kpc. This disk component appears to constituteonly 10 percent for (Fe/H) between -1.6 and -1 and 20 percent for (Fe/H)between -1.4 and -1.

A catalogue of [Fe/H] determinations: 1996 edition
A fifth Edition of the Catalogue of [Fe/H] determinations is presentedherewith. It contains 5946 determinations for 3247 stars, including 751stars in 84 associations, clusters or galaxies. The literature iscomplete up to December 1995. The 700 bibliographical referencescorrespond to [Fe/H] determinations obtained from high resolutionspectroscopic observations and detailed analyses, most of them carriedout with the help of model-atmospheres. The Catalogue is made up ofthree formatted files: File 1: field stars, File 2: stars in galacticassociations and clusters, and stars in SMC, LMC, M33, File 3: numberedlist of bibliographical references The three files are only available inelectronic form at the Centre de Donnees Stellaires in Strasbourg, viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5), or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Al, Mg and Eu Abundances in Globular Cluster Giants. I. Tests of Deep Mixing
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1996AJ....112.1517S&db_key=AST

Abundances of light elements in metal-poor stars. I. Atmospheric parameters and a new T_eff_ scale
We present atmospheric parameters for about 300 stars of differentchemical composition, whose spectra will be used to study the galacticenrichment of Fe and light elements. These parameters were derived usingan homogeneous iterative procedure, which considers new calibrations ofcolour-T_eff_ relations for F, G and K-type stars based on Infrared FluxMethod (IRFM) and interferometric diameters for population I stars, andthe Kurucz (1992) model atmospheres. We found that these calibrationsyield a self-consistent set of atmospheric parameters forT_eff_>4400K, representing a clear improvement over results obtainedwith older model atmospheres. Using this T_eff_ -scale and Feequilibrium of ionization, we obtained very low gravities (implyingluminosities incompatible with that expected for RGB stars) formetal-poor stars cooler than 4400K; this might be due either to amoderate Fe overionization (expected from statistical equilibriumcalculations) or to inadequacy of Kurucz models to describe theatmospheres of very cool giants. Our T_eff_ scale is compared with otherscales recently used for metal-poor stars; it agrees well with thoseobtained using Kurucz (1992) models, but it gives much larger T_eff_'sthan those obtained using OSMARCS models (Edvardsson et al. 1993). Thisdifference is attributed to the different treatment of convection in thetwo sets of models. For the Sun, the Kurucz (1992) model appears to bepreferable to the OSMARCS ones because it better predicts the solar limbdarkening; furthermore, we find that our photometric T_eff_ 's formetal-poor stars agree well with both direct estimates based on theIRFM, and with T_eff_'s derived from Hα wings when using Kuruczmodels.

Sodium Abundances in Field Metal-Poor Stars
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1996AJ....111.1689P&db_key=AST

Classification of Population II Stars in the Vilnius Photometric System. I. Methods
The methods used for classification of Population II stars in theVilnius photometric system are described. An extensive set of standardswith known astrophysical parameters compiled from the literature sourcesis given. These standard stars are classified in the Vilnius photometricsystem using the methods described. The accuracy of classification isevaluated by a comparison of the astrophysical parameters derived fromthe Vilnius photometric system with those estimated from spectroscopicstudies as well as from photometric data in other systems. For dwarfsand subdwarfs, we find a satisfactory agreement between our reddeningsand those estimated in the uvbyscriptstyle beta system. The standarddeviation of [Fe/H] deter mined in the Vilnius system is about 0.2 dex.The absolute magnitude for dwarfs and subdwarfs is estimated with anaccuracy of scriptstyle <=0.5 mag.

Ca II H and K Filter Photometry on the UVBY System. II. The Catalog of Observations
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995AJ....109.2828T&db_key=AST

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Cetus
Right ascension:00h33m14.31s
Declination:-10°43'42.7"
Apparent magnitude:9.485
Proper motion RA:17.2
Proper motion Dec:-9.5
B-T magnitude:10.998
V-T magnitude:9.61

Catalogs and designations:
Proper Names
HD 1989HD 3008
TYCHO-2 2000TYC 5269-1615-1
USNO-A2.0USNO-A2 0750-00130474
HIPHIP 2618

→ Request more catalogs and designations from VizieR