Home     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Astro Photo     The Collection     Forum     Blog New!     FAQ     Login  
→ Adopt this star  

HD 78616


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

A systematic study of variability among OB-stars based on HIPPARCOS photometry
Context: Variability is a key factor for understanding the nature of themost massive stars, the OB stars. Such stars lie closest to the unstableupper limit of star formation. Aims: In terms of statistics, thedata from the HIPPARCOS satellite are unique because of time coverageand uniformity. They are ideal to study variability in this large,uniform sample of OB stars. Methods: We used statisticaltechniques to determine an independant threshold of variabilitycorresponding to our sample of OB stars, and then applied an automaticalgorithm to search for periods in the data of stars that are locatedabove this threshold. We separated the sample stars into 4 maincategories of variability: 3 intrinsic and 1 extrinsic. The intrinsiccategories are: OB main sequence stars (~2/3 of the sample), OBe stars(~10%) and OB Supergiant stars (~1/4).The extrinsic category refers toeclipsing binaries. Results: We classified about 30% of the wholesample as variable, although the fraction depends on magnitude level dueto instrumental limitations. OBe stars tend to be much more variable(≈80%) than the average sample star, while OBMS stars are belowaverage and OBSG stars are average. Types of variables include αCyg, β Cep, slowly pulsating stars and other types from the generalcatalog of variable stars. As for eclipsing binaries, there arerelatively more contact than detached systems among the OBMS and OBestars, and about equal numbers among OBSG stars.

β Cephei stars in the ASAS-3 data. II. 103 new β Cephei stars and a discussion of low-frequency modes
Context: The β Cephei stars have been studied for over a hundredyears. Despite this, many interesting problems related to this class ofvariable stars remain unsolved. Fortunately, these stars seem to bewell-suited to asteroseismology. Hence, the results of seismic analysisof β Cephei stars should help us to better understand pulsationsand the main sequence evolution of massive stars, particularly theeffect of rotation on mode excitation and internal structure. It istherefore extremely important to increase the sample of known βCephei stars and select targets that are useful for asteroseismology. Aims: We analysed ASAS-3 photometry of bright early-type stars with thegoal of finding new β Cephei stars. We were particularly interestedin β Cephei stars that would be good for seismic analysis, i.e.,stars that (i) have a large number of excited modes; (ii) showrotationally split modes; (iii) are components of eclipsing binarysystems; (iv) have low-frequency modes, that is, are hybrid βCephei/SPB stars. Methods: Our study was made with a homogeneous sampleof over 4100 stars having MK spectral type B5 or earlier. For thesestars, the ASAS-3 photometry was analysed by means of a Fourierperiodogram. Results: We have discovered 103 β Cephei stars,nearly doubling the number of previously known stars of this type. Amongthese stars, four are components of eclipsing binaries, seven have modesequidistant or nearly equidistant in frequency. In addition, we foundfive β Cephei stars that show low-frequency periodic variations,very likely due to pulsations. We therefore regard them as candidatehybrid β Cephei/SPB pulsators. All these stars are potentially veryuseful for seismic modeling. Moreover, we found β Cephei-typepulsations in three late O-type stars and fast period changes in one, HD168050.Table 2 and Figs. 2-14 are only available in electronic form athttp://www.aanda.org The V photometry for all 103 stars is available inelectronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/477/917

β Cephei stars in the ASAS-3 data. I. Long-term variations of periods and amplitudes
Aims.We analyse V-filter ASAS-3 photometry of 41 known βCephei-type stars. The ASAS-3 photometry is combined with the archivaldata, if available, to determine long-term stability of periods andamplitudes of excited modes. Methods: Frequencies of modes are derivedby means of Fourier periodograms with consecutive prewhitening. Theresults are examined in the context of detection threshold. Results: Wedetected amplitude changes in three β Cephei stars, BW Cru, V836Cen, and V348 Nor. Period changes were found in KK Vel and V836 Cen. Ouranalysis shows that intrinsic period changes are more common amongmultiperiodic stars, apparently because they are caused by some kind ofmode interaction. In addition, we found new modes for seven stars, andfor ten others we provide new solutions or remove ambiguities in thedetected frequencies. One candidate hybrid β Cephei/SPB star, HD133823, is discovered.Appendix A, Figs. 2-6 and Tables 2-6 are only available in electronicform at http://www.aanda.org Table V photometry for all 41 stars is onlyavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/477/907

Amplitude saturation in ? Cephei models
Although the driving mechanism acting in ? Cephei pulsators is wellknown, problems concerning the identification of the amplitudelimitation mechanism and the non-uniform filling of the theoreticalinstability strip remain to be solved. In the present analysis, theseproblems are addressed by non-linear modelling of radial pulsations ofthese stars. In this approach radial modes are treated as representativeof all acoustic oscillations.Several models of different masses and metallicities were converged tolimit cycles through the Stellingwerf relaxation technique. Theresulting peak-to-peak amplitudes are of the order of ?V = 0.3mag. Such amplitudes are significantly larger than those observed in? Cephei pulsators. Assuming that all acoustic modes are similar,we show that collective saturation of the driving mechanism by severalacoustic modes can easily lower predicted saturation amplitudes to theobserved level. Our calculations predict a significant decrease insaturation amplitudes as we go to high-mass/high-luminosity models.However, this effect is not strong enough to explain the scarcity ofhigh-mass ? Cephei variables. A possible weakness of the collectivesaturation scenario is that the estimated line-broadening, resultingfrom excitation of many high-l modes, might be higher than that observedin some of the ? Cephei stars. We argue that this difficulty can beovercome by allowing g-modes to participate in the saturation process.We also discuss robust double-mode (DM) behaviour, encountered in ourradiative models. On a single evolutionary track we identify two DMdomains with two different mechanisms responsible for DM behaviour. Thenon-resonant DM domain separates the first overtone and fundamental-modepulsation domains. The resonant DM domain appears in the middle of thefirst overtone pulsation domain. Its origin can be traced to the2?1 = ?0 + ?2parametric resonance, which destabilizes the first overtone limit cycle.

Asteroseismology of the β Cephei star 12 (DD) Lacertae: photometric observations, pulsational frequency analysis and mode identification
We report a multisite photometric campaign for the β Cephei star 12Lacertae. 750 h of high-quality differential photoelectricStrömgren, Johnson and Geneva time-series photometry were obtainedwith nine telescopes during 190 nights. Our frequency analysis resultsin the detection of 23 sinusoidal signals in the light curves. Ten ofthose correspond to independent pulsation modes, and the remainder arecombination frequencies. We find some slow aperiodic variability such asthat seemingly present in several β Cephei stars. We perform modeidentification from our colour photometry, derive the spherical degree lfor the five strongest modes unambiguously and provide constraints on lfor the weaker modes. We find a mixture of modes of 0 <=l<= 4. Inparticular, we prove that the previously suspected rotationally splittriplet within the modes of 12 Lac consists of modes of different ltheir equal frequency splitting must thus be accidental.One of the periodic signals we detected in the light curves is argued tobe a linearly stable mode excited to visible amplitude by non-linearmode coupling via a 2:1 resonance. We also find a low-frequency signalin the light variations whose physical nature is unclear; it could be aparent or daughter mode resonantly coupled. The remaining combinationfrequencies are consistent with simple light-curve distortions.The range of excited pulsation frequencies of 12 Lac may be sufficientlylarge that it cannot be reproduced by standard models. We suspect thatthe star has a larger metal abundance in the pulsational driving zone, ahypothesis also capable of explaining the presence of β Cepheistars in the Large Magellanic Cloud.

New Estimates of the Solar-Neighborhood Massive Star Birthrate and the Galactic Supernova Rate
The birthrate of stars of masses >=10 Msolar is estimatedfrom a sample of just over 400 O3-B2 dwarfs within 1.5 kpc of the Sunand the result extrapolated to estimate the Galactic supernova ratecontributed by such stars. The solar-neighborhood Galactic-plane massivestar birthrate is estimated at ~176 stars kpc-3Myr-1. On the basis of a model in which the Galactic stellardensity distribution comprises a ``disk+central hole'' like that of thedust infrared emission (as proposed by Drimmel and Spergel), theGalactic supernova rate is estimated at probably not less than ~1 normore than ~2 per century and the number of O3-B2 dwarfs within the solarcircle at ~200,000.

Catalog of Galactic β Cephei Stars
We present an extensive and up-to-date catalog of Galactic β Cepheistars. This catalog is intended to give a comprehensive overview ofobservational characteristics of all known β Cephei stars, coveringinformation until 2004 June. Ninety-three stars could be confirmed to beβ Cephei stars. We use data from more than 250 papers publishedover the last nearly 100 years, and we provide over 45 notes onindividual stars. For some stars we reanalyzed published data orconducted our own analyses. Sixty-one stars were rejected from the finalβ Cephei list, and 77 stars are suspected to be β Cepheistars. A list of critically selected pulsation frequencies for confirmedβ Cephei stars is also presented.We analyze the β Cephei stars as a group, such as the distributionsof their spectral types, projected rotational velocities, radialvelocities, pulsation periods, and Galactic coordinates. We confirm thatthe majority of the β Cephei stars are multiperiodic pulsators. Weshow that, besides two exceptions, the β Cephei stars with highpulsation amplitudes are slow rotators. Those higher amplitude starshave angular rotational velocities in the same range as thehigh-amplitude δ Scuti stars (Prot>~3 days).We construct a theoretical HR diagram that suggests that almost all 93β Cephei stars are main-sequence objects. We discuss theobservational boundaries of β Cephei pulsation and the physicalparameters of the stars. We corroborate that the excited pulsation modesare near to the radial fundamental mode in frequency and we show thatthe mass distribution of the stars peaks at 12 Msolar. Wepoint out that the theoretical instability strip of the β Cepheistars is filled neither at the cool nor at the hot end and attempt toexplain this observation.

Shocked Clouds in the Vela Supernova Remnant
Unusually strong high-excitation C I has been detected in 11 lines ofsight through the Vela supernova remnant (SNR) by means of UV absorptionline studies of IUE data. Most of these lines of sight lie near thewestern edge of the bright X-ray region of the SNR in a spatiallydistinct band approximately 1° by 4° oriented approximatelynorth-south. The high-excitation C I (denoted C I* and C I**) isinterpreted as evidence of a complex of shocked dense clouds interactingwith the SNR, because of the high pressures indicated in this region. Tofurther analyze the properties of this region of enhanced C I* and CI**, we present new HIRES-processed IRAS data of the entire Vela SNR. Atemperature map calculated from the HIRES IRAS data, based on atwo-component dust model, reveals the signature of hot dust at severallocations in the SNR. The hot dust is anticorrelated spatially withX-ray emission, as would be expected for a dusty medium interacting witha shock wave. The regions of hot dust are strongly correlated withoptical filaments, supporting a scenario of dense clouds interior to theSNR that have been shocked and are now cooling behind the supernovablast wave. With few exceptions, the lines of sight to the stronghigh-excitation C I pass through regions of hot dust and opticalfilaments. Possible mechanisms for the production of the unexpectedlylarge columns of high-excitation C I are discussed. Dense clouds on theback western hemisphere of the remnant may explain the relatively lowX-ray emission in the western portion of the Vela SNR due to the slowerforward shock velocity in regions where the shock has encountered thedense clouds. An alternate explanation for the presence of ground-stateand excited-state neutrals, as well as ionized species, along the sameline of sight is a magnetic precursor that heats and compresses the gasahead of the shock.

Catalog of Galactic OB Stars
An all-sky catalog of Galactic OB stars has been created by extendingthe Case-Hamburg Galactic plane luminous-stars surveys to include 5500additional objects drawn from the literature. This work brings the totalnumber of known or reasonably suspected OB stars to over 16,000.Companion databases of UBVβ photometry and MK classifications forthese objects include nearly 30,000 and 20,000 entries, respectively.

Statistics of the Instability Strip of β Cephei Stars
We present a study of the β Cephei instability strip based on asample of 49 stars of this type. After deriving their effectivetemperatures and luminosities from their observed (B-V), (U-B) colorsand parallaxes we find their positions in the HR diagram to be mostlyconfined to the main sequence, and their masses to lie between 7Mȯ and 30 Mȯ. Their distribution on theHR diagram matches well with our previous theoretical instability stripwhich has an upper bound in the luminosity and rather tight boundariesin the effective temperature.

β Cep stars from a spectroscopic point of view
In this review we present the current status of line-profile-variationstudies of β Cep stars. Such studies have been performed for 26bright members of this class of pulsating stars in the past 25 years. Wedescribe all these currently available data and summarize theinterpretations based on them in terms of the excited pulsation modes.We emphasize that line-profile variations offer a much more detailedpicture of the pulsational behaviour of pulsating stars compared toground-based photometric data. The latter, however, remain necessary tounravel the often complex frequency pattern and to achieve unambiguousmode identification for multiperiodic β Cep stars and also toderive the pulsational properties of the faint members of the class. Wehighlight the statistical properties of the sample of 26 stars for whichaccurate spectroscopic studies are available and point out some futureprospects.

Two-colour photometry for 9473 components of close Hipparcos double and multiple stars
Using observations obtained with the Tycho instrument of the ESAHipparcos satellite, a two-colour photometry is produced for componentsof more than 7 000 Hipparcos double and multiple stars with angularseparations 0.1 to 2.5 arcsec. We publish 9473 components of 5173systems with separations above 0.3 arcsec. The majority of them did nothave Tycho photometry in the Hipparcos catalogue. The magnitudes arederived in the Tycho B_T and V_T passbands, similar to the Johnsonpassbands. Photometrically resolved components of the binaries withstatistically significant trigonometric parallaxes can be put on an HRdiagram, the majority of them for the first time. Based on observationsmade with the ESA Hipparcos satellite.

Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue.
We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.

Mode identification of the ?Cephei star BW Vulpeculae.
We analyse the pulsational behaviour of the large-amplitude ?Cepheistar BW Vulpeculae from high-resolution spectra. Our observations showvery clear line-doublings at the time of maximum outward acceleration.These line-doublings appear and disappear on a time scale of about 30minutes and lead to discontinuities in the radial-velocity curve. Fromour observations and photometric data we identify the pulsation mode ofBW Vulpeculae by applying respectively the moment method (see e.g. Aertset al. 1992) and the method of photometric amplitudes (see e.g.Heynderickx et al. 1994). Although a strong non-linear behaviourinvolving shock waves is suspected in the case of BW Vulpeculae (Crowe& Gillet 1989), both mode-identification techniques, which aredeveloped for linear motions only, point towards a radial pulsation.Combining our result with the one recently found by Moskalik &Buchler (1994) then leads to the conclusion that BW Vulpeculae pulsatesin the fundamental radial mode.

Observational status and excitation mechanisms of beta-Cephei variables.
Not Available

Nonadiabatic observables in beta Cephei models
Using results of linear nonadiabatic calculations for oscillations ofbeta Cephei star models, we calculate amplitudes and phases for light,color and radial velocity for the unstable modes of low harmonicdegrees, l. The nonadiabatic observables are the amplitude ratios andthe phase differences for various oscillating parameters. We constructtheoretical diagrams involving these observables as well as pulsationperiods and compare them with the stellar data. Balona & Stobie(1979) showed that the diagrams based on two-color photometric data maybe used to determine the l-value of an observed mode. Our use of resultsof nonadiabatic calculations improves their method. We show, inparticular, that the diagrams employing the satellite ultravioletmeasurements are the best for discrimination between the l = 0, 1 and 2cases. The clearest separation of the domains for the three l-valuesoccurs in the diagram making use of both photometric and the radialvelocity data. The observational points fall into three theoretricaldomains and an assignment of the l-value is unambiguous. A comparison ofthe theory with the observations is also made using the Period versusAmplitude ratios diagrams in various photometric systems. The agreementis very satisfactory and, in most cases, the l-value can be determined.The nonadiabtic observables are useful not only to determine l but alsothe radial order of the observed modes as well as for constrain meanstellar parameters. As an example we consider the case of delta Ceti-asingle mode beta Cephei star. Our results point to the significantmulticolor photometric and spectroscopic data for asteroseismology.

A photometric study of β Cephei stars. II. Determination of the degrees L of pulsation modes
The wavelength dependence of photometric amplitudes is used as a meansof identifying the degrees l of pulsation modes of β Cephei starsstudied in an earlier paper. To this end, an expression for thephotometric amplitude of a non-rotating pulsating star is derived interms of the wavelength of the radiation received and the degree of thepulsation mode involved. The derivation differs from earlier derivationsin that the specific radiation intensity is considered instead of theoutward normal radiation flux. Furthermore, the effects of thenon-radial components of the Lagrangian displacement on the localsurface element of the star are taken into account. The angulardependence of the specific radiation intensity is determined by alimb-darkening function. The relative Lagrangian perturbation of thespecific radiation intensity is set equal to the relative Lagrangianperturbation of the outward normal radiation flux. The physicalparameters of the β Cephei stars are estimated by means ofcalibrations of photometric systems. From a comparison of thecalibrations of the Walraven, the Geneva, and the Stroemgren system forearly-type stars, it appears that the most reliable values are obtainedby means of the Walraven system. The influence of the uncertainties onthe physical parameters on the determination of the degrees l ofpulsation modes in β Cephei stars is examined. The expression forthe photometric amplitude of a pulsating star is used for thedetermination of the degree l of a pulsation mode by fitting curves ofthe wavelength dependences of theoretical photometric amplitudes forvarious degrees l to the wavelength dependence of observationallydetermined photometric amplitudes. In this way, values for the degrees lof most of the pulsation modes of the β Cephei stars considered arefound. It appears that not all β Cephei stars pulsate in at leastone radial mode and that multiperiodic β Cephei stars pulsate in avariety of combinations of pulsation modes.

Mode identification with the moment method in four multiperiodic ? Cephei stars: KK Velorum, ? Eri, ? CMa, and V348 Normae
We present analyses of line profile variations obtained for fourmultiperiodic ? Cephei stars: KK Velorum, ? Eri, ? CMa, andV348 Normae. An identification of the modes has been attempted by meansof the moment method. This quantitative identification technique wasfirst proposed by Balona (1986) and was later refined by Aerts et al.(1992) in case of a monoperiodic pulsation in a slowly rotating star.Recently, Mathias et al. (1993) have proposed a generalisation of themoment method to multiperiodic pulsations. We apply their formalism toobtain the velocity parameters in the four mentioned stars. We havefound that KK Velorum, instead of being a monoperiodic variable,pulsates in two modes of which the second one has a period that is halfof the period of the already known mode. The Q-values for the two modesindicate that the main mode probably is a g-mode, while the second onedefinitely is a p-mode. Because we did not fully cover the overallbeat-period in ? Eri and ? CMa, we could treat only the mostimportant modes present in these stars. We found it very useful forthese cases to be able to combine photometric and spectroscopic results.The rapidly rotating star V348 Normae seems to pulsate in threehigh-degree modes with very large amplitudes, a confirmation of theresult obtained from a photometric analysis presented by Waelkens &Cuypers (1985).

Beta Cephei stars from a photometric point of view
This is an observational review, with an emphasis on photometric dataand their interpretation. Two lists are presented, one containing BetaCephei stars and the other Beta Cephei suspects. These lists then serveas a basis for discussing such topics as the location of Beta Cepheistars in the observational and theoretical H-R diagrams, theevolutionary state of these stars, the period-luminosity andperiod-luminosity-color relations, and observational identification ofpulsation modes. The paper also includes references to recent workconnected with the theoretical discovery that an opacity mechanism isresponsible for the excitation of Beta Cephei-star pulsations. Finally,observational programs for verifying the consequences of this discoveryare suggested.

A photometric study of Beta Cephei stars. I - Frequency analyses
A frequency analysis is presented for both new photometric data andolder radial-velocity measurements for 33 Beta Cephei stars. While thepresent results are largely in agreement with those of Cuypers (1985)and Engelbrecht (1986), marked differences are noted. A tabulation isgiven of the pulsation frequencies of the stars that are generallyaccepted to be Beta Cephei variables.

Secondary standards for H-beta photometry in the Southern Hemisphere (second series).
Not Available

Secondary standards for H-beta photometry in the E regions.
Not Available

UBV (RI)c standard stars in the E- and F-regions and in the Magellanic Clouds - a revised catalogue.
Not Available

Two lines of sight with exceedingly anomalous ultraviolet interstellar extinction
Low-resolution IUE data toward HD 62542 reveal an extinction curve withan extremely broad and weak UV extinction bump and the highest FUVextinction yet observed in the Milky Way. Parameters describing thecentral position and FWHM for weak bumps observed toward HD 62542 and HD29647 are derived using analytical fitting techniques. In both cases,the bump central positions are shifted shortward of 2175 A with aninitial wavelength of 2110 A for HD 62542 and an initial wavelength of2128 A for HD 29647. The bump FWHM is found to be 1.29/micron and1.62/micron for HD 62542 and HD 29647, respectively.

Secondary standards for the Stromgren UVBY system
Observations of 158 E region stars have been made in the Stromgrensystem, using the 46-cm reflector at Cape Town. They are mostly brighterthan eighth magnitude and are intended for use as secondary standardsfor the four-color system. The E region relative zero points are definedwith a precision of + or - 0.001 mag, and the internal standard errorsof the colors life between + or - 0.001 and + or - 0.002 mag.

A catalog of ultraviolet interstellar extinction excesses for 1415 stars
Ultraviolet interstellar extinction excesses are presented for 1415stars with spectral types B7 and earlier. The excesses with respect to Vare derived from Astronomical Netherlands Satellite (ANS) 5-channel UVphotometry at central wavelengths of approximately 1550, 1800, 2500, and3300 A. A measure of the excess extinction in the 2200-A extinction bumpis also given. The data are valuable for investigating the systematicsof peculiar interstellar extinction and for studying the character of UVinterstellar extinction in the general direction of stars for which theextinction-curve shape is unknown.

Two new multiperiodic Beta Cephei candidates in the Scorpius complex
The discovery of two hitherto unknown Beta Cephei candidates isreported. The photometric variations of both stars indicate the presenceof at least three frequencies. The periods of HD 147985 are 0.13231 d,0.14493 d, and 0.15666 d; the periods of HD 15662 are 0.16890 d, 0.18861d, and 0.16978 d. Both variables belong to the Scorpius complex. Unlikethe Beta Cephei candidates discovered in NGC 6231 (Balona and Shobbrook,1983), they fit into the classical instability strip. It thus seemsunlikely that the peculiar position in the HR diagram of the variablesin NGC 6231 is related to the galactic location of the cluster. Thepossibility of a more extended instability strip is discussed in view ofthe results of recent surveys in the solar neighborhood. It is foundthat the actual instability strip closely parallels the main sequence.

Comparsion Stars which Turn Out to be Variable
Not Available

The 67th Name-List of Variable Stars
Not Available

UBV photometry for southern OB stars
New UBV photometry of 1227 OB stars in the southern Milky Way ispresented. For 1113 of these stars, MK spectral types have been reportedpreviously in a comprehensive survey to B = 10.0 mag.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Vela
Right ascension:09h07m42.52s
Declination:-44°37'56.9"
Apparent magnitude:6.796
Distance:1250 parsecs
Proper motion RA:-6.1
Proper motion Dec:4.8
B-T magnitude:6.75
V-T magnitude:6.793

Catalogs and designations:
Proper Names
HD 1989HD 78616
TYCHO-2 2000TYC 7689-948-1
USNO-A2.0USNO-A2 0450-08305677
HIPHIP 44790

→ Request more catalogs and designations from VizieR