Home     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Astro Photo     The Collection     Forum     Blog New!     FAQ     Login  
→ Adopt this star  

HD 92823


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

A catalogue of eclipsing variables
A new catalogue of 6330 eclipsing variable stars is presented. Thecatalogue was developed from the General Catalogue of Variable Stars(GCVS) and its textual remarks by including recently publishedinformation about classification of 843 systems and making correspondingcorrections of GCVS data. The catalogue1 represents thelargest list of eclipsing binaries classified from observations.

Spectroscopy, Photometry and Micro-arcsec Astrometry of Binaries with the GAIA Space Mission and with the RAVE Experiment
The GAIA astrometric mission of ESA will be very efficient indiscovering binary and multiple stars with any orbital period, fromminutes to millions of years. The main parameters of the revised missiondesign are presented. Next we estimate the fraction of binary starsdiscovered by means of astrometry, photometry and on-board spectroscopy.Finally we summarize observations that confirm the ability to measurephysical parameters like masses, radii and spectroscopic distance fromGAIA data alone. GAIA will fly only in 2010, but the radial velocityexperiment (RAVE) has started this year. We show that its spectroscopicobservations have the capacity to discover a large fraction of so farunknown binary systems.

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

An Assessment of Dynamical Mass Constraints on Pre-Main-Sequence Evolutionary Tracks
We have assembled a database of stars having both masses determined frommeasured orbital dynamics and sufficient spectral and photometricinformation for their placement on a theoretical H-R diagram. Our sampleconsists of 115 low-mass (M<2.0 Msolar) stars, 27pre-main-sequence and 88 main-sequence. We use a variety of availablepre-main-sequence evolutionary calculations to test the consistency ofpredicted stellar masses with dynamically determined masses. Despitesubstantial improvements in model physics over the past decade, largesystematic discrepancies still exist between empirical and theoreticallyderived masses. For main-sequence stars, all models considered predictmasses consistent with dynamical values above 1.2 Msolar andsome models predict consistent masses at solar or slightly lower masses,but no models predict consistent masses below 0.5 Msolar,with all models systematically underpredicting such low masses by5%-20%. The failure at low masses stems from the poor match of mostmodels to the empirical main sequence below temperatures of 3800 K, atwhich molecules become the dominant source of opacity and convection isthe dominant mode of energy transport. For the pre-main-sequence samplewe find similar trends. There is generally good agreement betweenpredicted and dynamical masses above 1.2 Msolar for allmodels. Below 1.2 Msolar and down to 0.3 Msolar(the lowest mass testable), most evolutionary models systematicallyunderpredict the dynamically determined masses by 10%-30%, on average,with the Lyon group models predicting marginally consistent masses inthe mean, although with large scatter. Over all mass ranges, theusefulness of dynamical mass constraints for pre-main-sequence stars isin many cases limited by the random errors caused by poorly determinedluminosities and especially temperatures of young stars. Adopting awarmer-than-dwarf temperature scale would help reconcile the systematicpre-main-sequence offset at the lowest masses, but the case for this isnot compelling, given the similar warm offset at older ages between mostsets of tracks and the empirical main sequence. Over all age ranges, thesystematic discrepancies between track-predicted and dynamicallydetermined masses appear to be dominated by inaccuracies in thetreatment of convection and in the adopted opacities.

Evaluating GAIA performances on eclipsing binaries. III. Orbits and stellar parameters for UW LMi, V432 Aur and CN Lyn
The orbits and physical parameters of three detached F and G-typeeclipsing binaries have been derived combining Hipparcos HPphotometry with 8480-8740 Å ground-based spectroscopy, simulatingthe photometric + spectroscopic observations that the GAIA mission willobtain. Tycho BT and VT light curves are too noisyto be modeled for the three targets, and only mean Tycho colors areretained to constrain the temperature. No previous combinedphotometric+spectroscopic solution exists in the literature for any ofthe three targets. Quite remarkably, CN Lyn turned out to be anequal-masses F5 triple system. Distances from the orbital solutionsagree within the astrometric error with the Hipparcos parallaxes.

Photoelectric Minimum Times of Some Eclipsing Binary Stars
We present 20 minima times of 8 eclipsing binaries.

Spectroscopic binary orbits from photoelectric radial velocities. Paper 160: HD 44192, HD 45191, and HD 92823
Not Available

Absolute dimensions of solar-type eclipsing binaries. I. uvby light curves for HS Aqr, KX Aqr, AL Ari, V963 Cen, MR Del, NY Hya, DU Leo, UW LMi, and V358 Pup
We present complete uvby light curves of 9 recently discovered eclipsingbinaries having late F, G, and K type components within or near themain-sequence band. They are the first results from a long term programcarried out since 1994 at the Strömgren Automatic Telescope at ESO,La Silla. The aim is to provide the accurate absolute dimensions forsolar-type stars needed for critical tests of the correspondingtheoretical models. A serious dilemma appears to be present in thecomparison of predictions from current stellar models with fundamentalproperties of known 0.7-1.1 Msun eclipsing binaries (Popper\cite{dmp97b}, Clausen et al. \cite{granada99b}). Spectroscopicobservations of the 9 eclipsing binaries are either available or arebeing obtained, and detailed analyses of the individual systems will bepublished in a series of subsequent papers. The light curves wereobtained as part of a systematic search for new eclipsing systems amonga large sample of (mostly) spectroscopic binaries. Catalogues of theextensive uvby and beta photometry from this search will be publishedseparately. Based on observations carried out with the StrömgrenAutomatic Telescope (SAT) at ESO, La Silla, Chile. When the individualanalyses are finished, Tables 12-20 will gradually be made available inelectronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/374/980

The 74th Special Name-list of Variable Stars
We present the Name-list introducing GCVS names for 3153 variable starsdiscovered by the Hipparcos mission.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Leo Minor
Right ascension:10h43m30.20s
Declination:+28°41'09.1"
Apparent magnitude:8.328
Distance:129.366 parsecs
Proper motion RA:-4.2
Proper motion Dec:-95
B-T magnitude:9.025
V-T magnitude:8.386

Catalogs and designations:
Proper Names
HD 1989HD 92823
TYCHO-2 2000TYC 1979-1262-1
USNO-A2.0USNO-A2 1125-06167464
HIPHIP 52465

→ Request more catalogs and designations from VizieR