Home     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Astro Photo     The Collection     Forum     Blog New!     FAQ     Login  
→ Adopt this star  

HD 103036


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

A catalog of rotational and radial velocities for evolved stars. IV. Metal-poor stars^
Aims.The present paper describes the first results of an observationalprogram intended to refine and extend the existing v sin i measurementsof metal-poor stars, with an emphasis on field evolved stars.Methods: .The survey was carried out with the FEROS and CORALIEspectrometers. For the v sin i measurements, obtained from spectralsynthesis, we estimate an uncertainty of about 2.0 km s-1. Results: .Precise rotational velocities v sin i are presented for alarge sample of 100 metal-poor stars, most of them evolving off themain-sequence. For the large majority of the stars composing the presentsample, rotational velocities have been measured for the first time.

Galactic model parameters for field giants separated from field dwarfs by their 2MASS and V apparent magnitudes
We present a method which separates field dwarfs and field giants bytheir 2MASS and V apparent magnitudes. This method is based onspectroscopically selected standards and is hence reliable. We appliedit to stars in two fields, SA 54 and SA 82, and we estimated a full setof Galactic model parameters for giants including their total localspace density. Our results are in agreement with the ones given in therecent literature.

Estimation of Carbon Abundances in Metal-Poor Stars. I. Application to the Strong G-Band Stars of Beers, Preston, and Shectman
We develop and test a method for the estimation of metallicities([Fe/H]) and carbon abundance ratios ([C/Fe]) for carbon-enhancedmetal-poor (CEMP) stars based on the application of artificial neuralnetworks, regressions, and synthesis models to medium-resolution (1-2Å) spectra and J-K colors. We calibrate this method by comparisonwith metallicities and carbon abundance determinations for 118 starswith available high-resolution analyses reported in the recentliterature. The neural network and regression approaches make use of apreviously defined set of line-strength indices quantifying the strengthof the Ca II K line and the CH G band, in conjunction with J-K colorsfrom the Two Micron All Sky Survey Point Source Catalog. The use ofnear-IR colors, as opposed to broadband B-V colors, is required becauseof the potentially large affect of strong molecular carbon bands onbluer color indices. We also explore the practicality of obtainingestimates of carbon abundances for metal-poor stars from the spectralinformation alone, i.e., without the additional information provided byphotometry, as many future samples of CEMP stars may lack such data. Wefind that although photometric information is required for theestimation of [Fe/H], it provides little improvement in our derivedestimates of [C/Fe], and hence, estimates of carbon-to-iron ratios basedsolely on line indices appear sufficiently accurate for most purposes.Although we find that the spectral synthesis approach yields the mostaccurate estimates of [C/Fe], in particular for the stars with thestrongest molecular bands, it is only marginally better than is obtainedfrom the line index approaches. Using these methods we are able toreproduce the previously measured [Fe/H] and [C/Fe] determinations withan accuracy of ~0.25 dex for stars in the metallicity interval-5.5<=[Fe/H]<=-1.0 and with 0.2<=(J-K)0<=0.8. Athigher metallicity, the Ca II K line begins to saturate, especially forthe cool stars in our program, and hence, this approach is not useful insome cases. As a first application, we estimate the abundances of [Fe/H]and [C/Fe] for the 56 stars identified as possibly carbon-rich, relativeto stars of similar metal abundance, in the sample of ``strong G-band''stars discussed by Beers, Preston, and Shectman.

A study of Kapteyn's star
We present a review of the current knowledge of Kapteyn's Star (KS) - anearby, low-metallicity M-dwarf, with an eccentric and retrogradeGalactic orbit. A brief survey of its spectroscopic properties isprovided, together with an analysis of its Galactic orbit in a Galaxymodel that incorporates resonances. We propose that KS may have oncebelonged to a dwarf spheroidal galaxy that merged with the Galaxy, andwhose present remnant, if it still exists, is a globular cluster similarto ω Cen.

The Effective Temperature Scale of FGK Stars. I. Determination of Temperatures and Angular Diameters with the Infrared Flux Method
The infrared flux method (IRFM) has been applied to a sample of 135dwarf and 36 giant stars covering the following regions of theatmospheric parameter space: (1) the metal-rich ([Fe/H]>~0) end(consisting mostly of planet-hosting stars), (2) the cool(Teff<~5000 K) metal-poor (-1<~[Fe/H]<~-3) dwarfregion, and (3) the very metal-poor ([Fe/H]<~-2.5) end. These starswere especially selected to cover gaps in previous works onTeff versus color relations, particularly the IRFMTeff scale of A. Alonso and collaborators. Our IRFMimplementation was largely based on the Alonso et al. study (absoluteinfrared flux calibration, bolometric flux calibration, etc.) with theaim of extending the ranges of applicability of their Teffversus color calibrations. In addition, in order to improve the internalaccuracy of the IRFM Teff scale, we recomputed thetemperatures of almost all stars from the Alonso et al. work usingupdated input data. The updated temperatures do not significantly differfrom the original ones, with few exceptions, leaving the Teffscale of Alonso et al. mostly unchanged. Including the stars withupdated temperatures, a large sample of 580 dwarf and 470 giant stars(in the field and in clusters), which cover the ranges3600K<~Teff<~8000K and -4.0<~[Fe/H]<~+0.5, haveTeff homogeneously determined with the IRFM. The meanuncertainty of the temperatures derived is 75 K for dwarfs and 60 K forgiants, which is about 1.3% at solar temperature and 4500 K,respectively. It is shown that the IRFM temperatures are reliable in anabsolute scale given the consistency of the angular diameters resultingfrom the IRFM with those measured by long baseline interferometry, lunaroccultation, and transit observations. Using the measured angulardiameters and bolometric fluxes, a comparison is made between IRFM anddirect temperatures, which shows excellent agreement, with the meandifference being less than 10 K for giants and about 20 K for dwarfstars (the IRFM temperatures being larger in both cases). This resultwas obtained for giants in the ranges 3800K

The Rise of the s-Process in the Galaxy
From newly obtained high-resolution, high signal-to-noise ratio spectrathe abundances of the elements La and Eu have been determined over thestellar metallicity range -3<[Fe/H]<+0.3 in 159 giant and dwarfstars. Lanthanum is predominantly made by the s-process in the solarsystem, while Eu owes most of its solar system abundance to ther-process. The changing ratio of these elements in stars over a widemetallicity range traces the changing contributions of these twoprocesses to the Galactic abundance mix. Large s-process abundances canbe the result of mass transfer from very evolved stars, so to identifythese cases we also report carbon abundances in our metal-poor stars.Results indicate that the s-process may be active as early as[Fe/H]=-2.6, although we also find that some stars as metal-rich as[Fe/H]=-1 show no strong indication of s-process enrichment. There is asignificant spread in the level of s-process enrichment even at solarmetallicity.

Stellar Chemical Signatures and Hierarchical Galaxy Formation
To compare the chemistries of stars in the Milky Way dwarf spheroidal(dSph) satellite galaxies with stars in the Galaxy, we have compiled alarge sample of Galactic stellar abundances from the literature. Whenkinematic information is available, we have assigned the stars tostandard Galactic components through Bayesian classification based onGaussian velocity ellipsoids. As found in previous studies, the[α/Fe] ratios of most stars in the dSph galaxies are generallylower than similar metallicity Galactic stars in this extended sample.Our kinematically selected stars confirm this for the Galactic halo,thin-disk, and thick-disk components. There is marginal overlap in thelow [α/Fe] ratios between dSph stars and Galactic halo stars onextreme retrograde orbits (V<-420 km s-1), but this is notsupported by other element ratios. Other element ratios compared in thispaper include r- and s-process abundances, where we find a significantoffset in the [Y/Fe] ratios, which results in a large overabundance in[Ba/Y] in most dSph stars compared with Galactic stars. Thus, thechemical signatures of most of the dSph stars are distinct from thestars in each of the kinematic components of the Galaxy. This resultrules out continuous merging of low-mass galaxies similar to these dSphsatellites during the formation of the Galaxy. However, we do not ruleout very early merging of low-mass dwarf galaxies, since up to one-halfof the most metal-poor stars ([Fe/H]<=-1.8) have chemistries that arein fair agreement with Galactic halo stars. We also do not rule outmerging with higher mass galaxies, although we note that the LMC and theremnants of the Sgr dwarf galaxy are also chemically distinct from themajority of the Galactic halo stars. Formation of the Galaxy's thickdisk by heating of an old thin disk during a merger is also not ruledout; however, the Galaxy's thick disk itself cannot be comprised of theremnants from a low-mass (dSph) dwarf galaxy, nor of a high-mass dwarfgalaxy like the LMC or Sgr, because of differences in chemistry.The new and independent environments offered by the dSph galaxies alsoallow us to examine fundamental assumptions related to thenucleosynthesis of the elements. The metal-poor stars ([Fe/H]<=-1.8)in the dSph galaxies appear to have lower [Ca/Fe] and [Ti/Fe] than[Mg/Fe] ratios, unlike similar metallicity stars in the Galaxy.Predictions from the α-process (α-rich freeze-out) would beconsistent with this result if there have been a lack of hypernovae indSph galaxies. The α-process could also be responsible for thevery low Y abundances in the metal-poor stars in dSph's; since [La/Eu](and possibly [Ba/Eu]) are consistent with pure r-process results, thelow [Y/Eu] suggests a separate r-process site for this light(first-peak) r-process element. We also discuss SNe II rates and yieldsas other alternatives, however. In stars with higher metallicities([Fe/H]>=-1.8), contributions from the s-process are expected; [(Y,La, and Ba)/Eu] all rise as expected, and yet [Ba/Y] is still muchhigher in the dSph stars than similar metallicity Galactic stars. Thisresult is consistent with s-process contributions from lower metallicityAGB stars in dSph galaxies, and is in good agreement with the slowerchemical evolution expected in the low-mass dSph galaxies relative tothe Galaxy, such that the build-up of metals occurs over much longertimescales. Future investigations of nucleosynthetic constraints (aswell as galaxy formation and evolution) will require an examination ofmany stars within individual dwarf galaxies.Finally, the Na-Ni trend reported in 1997 by Nissen & Schuster isconfirmed in Galactic halo stars, but we discuss this in terms of thegeneral nucleosynthesis of neutron-rich elements. We do not confirm thatthe Na-Ni trend is related to the accretion of dSph galaxies in theGalactic halo.

Ca II K Emission-Line Asymmetries Among Red Giants
Measurements of the asymmetry of the K2 emission line of CaII have been made for a sample of bright field giants with B-V>1.15observed with the Cassegrain echelle spectrometer on the McDonaldObservatory 2.1 m telescope. The asymmetry of the Ca II K2line is quantified through measurement of a parameter V/R, which isdefined as the ratio between the maximum counts recorded in the violetand red components of the double-peaked emission profile. Red-maximumasymmetry (V/R<1.0) is found in our sample of 35 giants only amongstars with B-V>1.35, a trend that is still maintained (with oneexception) with the inclusion of an additional sample of giantspreviously observed by us with the same spectrograph. Althoughexceptional stars can be found in the literature, the data support anearlier finding by R. Stencel that among luminosity class III fieldgiants the occurrence of V/R<1.0 is generally restricted to effectivetemperatures cooler than 4320 K. This limit may coincide with the onsetof pulsation.

Magnesium Isotopic Abundance Ratios in Cool Stars
From high-resolution spectra of 61 cool dwarfs and giants, Mg isotopicabundance ratios 24Mg:25Mg:26Mg arederived from spectral synthesis of the MgH A-X lines near 5140 Å.Our sample spans the range -2.5<=[Fe/H]<=0.1, including the firstmeasurements of Mg isotope ratios in stars with metallicities below[Fe/H]=-2.0. We confirm the decrease in 25Mg/24Mgand 26Mg/24Mg with decreasing [Fe/H], as predictedby recent models of Galactic chemical evolution in which the Mg isotopesare produced in massive stars. A subset of kinematically identifiedthin-disk stars have Mg isotope ratios in excellent agreement with thepredictions. Within the measurement uncertainties, these thin-disk starsshow no scatter about the predictions. Several of our stars are likelymembers of the thick disk, and their high Mg isotopic ratios may reflectthe nucleosynthetic history of the thick disk, which is distinct fromthe predictions for, and observations of, the thin disk. For thick-diskand halo stars we find a scatter in 25Mg/24Mg and26Mg/24Mg exceeding our measurement uncertaintiesand increasing with increasing metallicity. Our data suggest that anadditional source of 25Mg and 26Mg is required.Intermediate-mass asymptotic giant branch stars are likely candidates.

Oxygen Abundances in Metal-poor Stars
We present oxygen abundances derived from both the permitted andforbidden oxygen lines for 55 subgiants and giants with [Fe/H] valuesbetween -2.7 and solar with the goal of understanding the discrepancy inthe derived abundances. A first attempt, using Teff valuesfrom photometric calibrations and surface gravities from luminositiesobtained agreement between the indicators for turn-off stars, but thedisagreement was large for evolved stars. We find that the difference inthe oxygen abundances derived from the permitted and forbidden lines ismost strongly affected by Teff, and we derive a newTeff scale based on forcing the two sets of lines to give thesame oxygen abundances. These new parameters, however, do not agree withother observables, such as theoretical isochrones or Balmer-line profilebased Teff determinations. Our analysis finds thatone-dimensional, LTE analyses (with published non-LTE corrections forthe permitted lines) cannot fully resolve the disagreement in the twoindicators without adopting a temperature scale that is incompatiblewith other temperature indicators. We also find no evidence ofcircumstellar emission in the forbidden lines, removing such emission asa possible cause for the discrepancy.

Mg isotopic ratios in giant stars of the globular cluster NGC 6752
Mg isotopic abundance ratios are measured in 20 bright red giants inglobular cluster NGC 6752 based on very high-resolution (R ~ 110 000),high signal-to-noise spectra obtained with UVES on the VLT. There is aconsiderable spread in the ratio24Mg:25Mg:26Mg with values ranging from53:9:39 to 83:10:7. We measured the abundances of O, Na, Mg, Al, and Fecombining our sample with 21 RGB bump stars (Grundahl et al.\cite{grundahl02}). The abundances of the samples are consistent andexhibit the usual anticorrelations between O-Na and Mg-Al. A positivecorrelation is found between 26Mg and Al, a mildanticorrelation is found between 24Mg and Al, while nocorrelation is found between 25Mg and Al. None of theelemental or isotopic abundances show a dependence on evolutionarystatus and, as shown by Gratton et al. (\cite{gratton01}), the abundancevariations exist even in main sequence stars. This strongly suggeststhat the star-to-star abundance variations are a result of varyingdegrees of pollution with intermediate mass AGB stars being likelypolluters. Consideration of the extremes of the abundance variationsprovides the composition of the ambient material and the processedmaterial. In the least contaminated stars (lowest Na and Al and highestO and Mg abundances), we infer a Mg isotopic ratio around 80:10:10 and acomposition ([O/Fe], [Na/Fe], [Mg/Fe], [Al/Fe]) =~ (0.6, -0.1, 0.5,0.0). In the most polluted stars, we find a Mg isotopic ratio around60:10:30 and a composition ([O/Fe], [Na/Fe], [Mg/Fe], [Al/Fe]) =~(-0.1, 0.6, 0.3, 1.2). Even for the least polluted stars, the abundancesof 25Mg and 26Mg relative to 24Mg areconsiderably higher than predicted for ejecta from Z=0 supernovae. Zerometallicity AGB stars may be responsible for these higher abundances.Our measured Mg isotopic ratios reveal another layer to the globularcluster star-to-star abundance variations that demands extensions of ourpresent theoretical knowledge of stellar nucleosynthesis by giant stars.Based on observations obtained with the ESO Very Large Telescope UVESspectrograph for programmes 67.D-0145 and 65.L-0165.

STELIB: A library of stellar spectra at R ~ 2000
We present STELIB, a new spectroscopic stellar library, available athttp://webast.ast.obs-mip.fr/stelib. STELIB consists of an homogeneouslibrary of 249 stellar spectra in the visible range (3200 to 9500Å), with an intermediate spectral resolution (la 3 Å) andsampling (1 Å). This library includes stars of various spectraltypes and luminosity classes, spanning a relatively wide range inmetallicity. The spectral resolution, wavelength and spectral typecoverage of this library represents a substantial improvement overprevious libraries used in population synthesis models. The overallabsolute photometric uncertainty is 3%.Based on observations collected with the Jacobus Kaptein Telescope,(owned and operated jointly by the Particle Physics and AstronomyResearch Council of the UK, The Nederlandse Organisatie voorWetenschappelijk Onderzoek of The Netherlands and the Instituto deAstrofísica de Canarias of Spain and located in the SpanishObservatorio del Roque de Los Muchachos on La Palma which is operated bythe Instituto de Astrofísica de Canarias), the 2.3 mtelescope of the Australian National University at Siding Spring,Australia, and the VLT-UT1 Antu Telescope (ESO).Tables \ref{cat1} to \ref{cat6} and \ref{antab1} to A.7 are onlyavailable in electronic form at http://www.edpsciences.org. The StellarLibrary STELIB library is also available at the CDS, via anonymous ftpto cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/402/433

Oxygen line formation in late-F through early-K disk/halo stars. Infrared O I triplet and [O I] lines
In order to investigate the formation of O I 7771-5 and [O I] 6300/6363lines, extensive non-LTE calculations for neutral atomic oxygen werecarried out for wide ranges of model atmosphere parameters, which areapplicable to early-K through late-F halo/disk stars of variousevolutionary stages.The formation of the triplet O I lines was found to be well described bythe classical two-level-atom scattering model, and the non-LTEcorrection is practically determined by the parameters of theline-transition itself without any significant relevance to the detailsof the oxygen atomic model. This simplifies the problem in the sensethat the non-LTE abundance correction is essentially determined only bythe line-strength (Wlambda ), if the atmospheric parametersof Teff, log g, and xi are given, without any explicitdependence of the metallicity; thus allowing a useful analytical formulawith tabulated numerical coefficients. On the other hand, ourcalculations lead to the robust conclusion that LTE is totally valid forthe forbidden [O I] lines.An extensive reanalysis of published equivalent-width data of O I 7771-5and [O I] 6300/6363 taken from various literature resulted in theconclusion that, while a reasonable consistency of O I and [O I]abundances was observed for disk stars (-1 <~ [Fe/H] <~ 0), theexistence of a systematic abundance discrepancy was confirmed between OI and [O I] lines in conspicuously metal-poor halo stars (-3 <~[Fe/H] <~ -1) without being removed by our non-LTE corrections, i.e.,the former being larger by ~ 0.3 dex at -3 <~ [Fe/H] <~ -2.An inspection of the parameter-dependence of this discordance indicatesthat the extent of the discrepancy tends to be comparatively lessenedfor higher Teff/log g stars, suggesting the preference ofdwarf (or subgiant) stars for studying the oxygen abundances ofmetal-poor stars.Tables 2, 5, and 7 are only available in electronic form, at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/402/343 and Table\ref{tab3} is only available in electronic form athttp://www.edpsciences.org

Spectroscopic Binaries, Velocity Jitter, and Rotation in Field Metal-poor Red Giant and Red Horizontal-Branch Stars
We summarize 2007 radial velocity measurements of 91 metal-poor fieldred giants. Excluding binary systems with orbital solutions, ourcoverage averages 13.7 yr per star, with a maximum of 18.0 yr. We reportfour significant findings. (1) Sixteen stars are found to bespectroscopic binaries, and we present orbital solutions for 14 of them.The spectroscopic binary frequency of the metal-poor red giants, with[Fe/H]<=-1.4, for periods less than 6000 days, is 16%+/-4%, which isnot significantly different from that of comparable-metallicity fielddwarfs, 17%+/-2%. The two CH stars in our program, BD -1°2582 and HD135148, are both spectroscopic binaries. (2) Velocity jitter is presentamong about 40% of the giants with MV<=-1.4. The twobest-observed cases, HD 3008 and BD +22°2411, showpseudoperiodicities of 172 and 186 days, longer than any knownlong-period variable in metal-poor globular clusters. Photometricvariability seen in HD 3008 and three other stars showing velocityjitter hints that starspots are the cause. However, the phasing of thevelocity data with the photometry data from Hipparcos is not consistentwith a simple starspot model for HD 3008. We argue against orbitalmotion effects and radial pulsation, so rotational modulation remainsthe best explanation. The implied rotational velocities for HD 3008 andBD +22°2411, both with MV<=-1.4 and R~50Rsolar, exceed 12 km s-1. (3) Including HD 3008and BD +22°2411, we have found signs of significant excess linebroadening in eight of the 17 red giants with MV<=-1.4,which we interpret as rotation. In three cases, BD +30°2034, CD-37°14010, and HD 218732, the rotation is probably induced by tidallocking between axial rotation and the observed orbital motion with astellar companion. But this cannot explain the other five stars in oursample that display signs of significant rotation. This high frequencyof elevated rotational velocities does not appear to be caused bystellar mass transfer or mergers: there are too few main-sequencebinaries with short enough periods. We also note that the lack of anynoticeable increase in mean rotation at the magnitude level of the redgiant branch luminosity function ``bump'' argues against the rapidrotation's being caused by the transport of internal angular momentum tothe surface. Capture of a planetary-mass companion as a red giantexpands in radius could explain the high rotational velocities. (4) Wealso find significant rotation in at least six of the roughly 15 (40%)red horizontal-branch stars in our survey. It is likely that theenhanced rotation seen among a significant fraction of both blue and redhorizontal-branch stars arose when these stars were luminous red giants.Rapid rotation alone therefore appears insufficient cause to populatethe blue side of the horizontal branch. While the largest projectedrotational velocities seen among field blue and red horizontal-branchstars are consistent with their different sizes, neither are consistentwith the large values we find for the largest red giants. This suggeststhat some form of angular momentum loss (and possibly mass loss) hasbeen at work. Also puzzling is the apparent absence of rotation seen infield RR Lyrae variables. Angular momentum transfer and conservation inevolved metal-poor field stars thus pose many interesting questions forthe evolution of low-mass stars.

Abundances and Kinematics of Field Stars. II. Kinematics and Abundance Relationships
As an investigation of the origin of ``α-poor'' halo stars, weanalyze kinematic and abundance data for 73 intermediate-metallicitystars (-1>[Fe/H]>=-2) selected from Paper I of this series. We findevidence for a connection between the kinematics and the enhancement ofcertain element-to-iron ([X/Fe]) ratios in these stars. Statisticallysignificant correlations were found between [X/Fe] and galacticrest-frame velocities (vRF) for Na, Mg, Al, Si, Ca, and Ni,with marginally significant correlations existing for Ti and Y as well.We also find that the [X/Fe] ratios for these elements all correlatewith a similar level of significance with [Na/Fe]. Finally, we comparethe abundances of these halo stars against those of stars in nearbydwarf spheroidal (dSph) galaxies. We find significant differencesbetween the abundance ratios in the dSph stars and halo stars of similarmetallicity. From this result, it is unlikely that the halo stars in thesolar neighborhood, including even the ``α-poor'' stars, were oncemembers of disrupted dSph galaxies similar to those studied to date.

Detection of Metal-poor Stars in the Direction of the North Galactic Pole
A simple approach to detecting metal-poor stars is to measure amagnesium index, which depends on the Mg H band plus the three nearby Mgb lines and is derived through intermediate-band interference filters.An empirically established line of demarcation in the Mg index versusB-V diagram separates metal-poor stars from solar-abundance stars. Afurther separation between metal-poor dwarfs and giants depends on B-Vprimarily dwarfs for B-V<0.55, giants for B-V>0.7, with both dwarfsand giants falling in the transition region. For the metal-poor giantsthe distance from the demarcation line correlates well with [Fe/H],permitting estimates of stellar abundances. Stars in two regions on thesky in the vicinity of the north Galactic pole have been observed withsuch a set of filters. Eighteen stars (6% of the population of 299) inthe sample covering the V range 8.7 to 15.6 and 48 stars (31% of thepopulation of 163) in a deeper probe to V=19.9 found through thisprocess are suspected metal-poor stars according to their Mg indices.Twenty-three are specifically deemed giants, with<[Fe/H]><=-1.5.

Abundances and Kinematics of Field Halo and Disk Stars. I. Observational Data and Abundance Analysis
We describe observations and abundance analysis of a high-resolution,high signal-to-noise ratio survey of 168 stars, most of which aremetal-poor dwarfs. We follow a self-consistent LTE analysis technique todetermine the stellar parameters and abundances, and we estimate theeffects of random and systematic uncertainties on the resultingabundances. Element-to-iron ratios are derived for key α-, odd-Z,Fe-peak, and r- and s-process elements. Effects of non-LTE on theanalysis of Fe I lines are shown to be very small on average.Spectroscopically determined surface gravities are derived that arequite close to those obtained from Hipparcos parallaxes.

Studies of Yellow Semiregular(SRd) Variables
We have used the Hipparcos database of epoch photometry to study thevariability of several yellow semiregular(SRd) variables. For some ofthe stars (V847 Cas, RW Cep, BM Sco, CE Vir), the results wereinconclusive. For SX Lac and TY Vir, the periods found were consistentwith the General Catalogue of Variable Stars (190 and 50 daysrespectively). For UU Her, the known periods of about 45 and 72 dayswere recovered. For WY And, RU Cep, and SX Her, reliable periods werefound; we used archival data to construct (O-C) diagrams to study boththe random and systematic period changes in these three stars.

Kinematics of Metal-poor Stars in the Galaxy. II. Proper Motions for a Large Nonkinematically Selected Sample
We present a revised catalog of 2106 Galactic stars, selected withoutkinematic bias and with available radial velocities, distance estimates,and metal abundances in the range -4.0<=[Fe/H]<=0.0. This updateof the 1995 Beers & Sommer-Larsen catalog includes newly derivedhomogeneous photometric distance estimates, revised radial velocitiesfor a number of stars with recently obtained high-resolution spectra,and refined metallicities for stars originally identified in the HKobjective-prism survey (which account for nearly half of the catalog)based on a recent recalibration. A subset of 1258 stars in this cataloghave available proper motions based on measurements obtained with theHipparcos astrometry satellite or taken from the updated AstrographicCatalogue (second epoch positions from either the Hubble Space TelescopeGuide Star Catalog or the Tycho Catalogue), the Yale/San Juan SouthernProper Motion Catalog 2.0, and the Lick Northern Proper Motion Catalog.Our present catalog includes 388 RR Lyrae variables (182 of which arenewly added), 38 variables of other types, and 1680 nonvariables, withdistances in the range 0.1 to 40 kpc.

The Chemical Compositions of the SRD Variable Stars. II. WY Andromedae, VW Eridani, and UW Librae
Chemical compositions are derived from high-resolution spectra for threestars classed as SRd variables in the General Catalogue of VariableStars. These stars are shown to be metal-poor supergiants: WY And with[Fe/H]=-1.0, VW Eri with [Fe/H]=-1.8, and UW Lib with [Fe/H]=-1.2. Theircompositions are identical to within the measurement errors to thecompositions of subdwarfs, subgiants, and less evolved giants of thesame [Fe/H]. The stars are at the tip of the first giant branch or inthe early stages of evolution along the asymptotic giant branch (AGB).There is no convincing evidence that these SRd variables areexperiencing thermal pulsing and the third dredge-up on the AGB. The SRdvariables appear to be at the cool limit of the sequence of RV Taurivariables.

Estimation of Stellar Metal Abundance. II. A Recalibration of the Ca II K Technique, and the Autocorrelation Function Method
We have recalibrated a method for the estimation of stellar metalabundance, parameterized as [Fe/H], based on medium-resolution (1-2Å) optical spectra (the majority of which cover the wavelengthrange 3700-4500 Å). The equivalent width of the Ca II K line (3933Å) as a function of [Fe/H] and broadband B-V color, as predictedfrom spectrum synthesis and model atmosphere calculations, is comparedwith observations of 551 stars with high-resolution abundances availablefrom the literature (a sevenfold increase in the number of calibrationstars that were previously available). A second method, based on theFourier autocorrelation function technique first described by Ratnatunga& Freeman, is used to provide an independent estimate of [Fe/H], ascalibrated by comparison with 405 standard-star abundances.Metallicities based on a combination of the two techniques for dwarfsand giants in the color range 0.30<=(B-V)_0<=1.2 exhibit anexternal 1 sigma scatter of approximately 0.10-0.20 dex over theabundance range -4.0<=[Fe/H]<=0.5. Particular attention has beengiven to the determination of abundance estimates at the metal-rich endof the calibration, where our previous attempt suffered from aconsiderable zero-point offset. Radial velocities, accurate toapproximately 10 km s^-1, are reported for all 551 calibration stars.

IRAS Detections of Metal-poor Red Giants
A number of relatively bright metal-poor red giants from the HD and BDcatalogs are found to have been detected by the IRAS satellite. Data forthese stars have been retrieved from the IRAS Point Source Catalog (PSC)and/or the Faint Source Catalog (FSC). The majority of metal-poor giantsin these samples fall along relatively well-defined sequences in plotsof V-[12] versus B-V and V-I; for these stars, the 12 μm fluxdetected is presumed to arise from the photosphere. Only a subset ofstars detected at 12 μm were detected at 25 μm these are displayedin a plot of [12]-[25] versus V-[12]. There are a small number of giantsthat exhibit notable 12 and/or 25 μm excesses relative to the meansequences defined by the bulk of the sample. Those stars with the mostunambiguous evidence for infrared excesses are variable stars, eitherlong-period or semiregular variables or RV Tauri stars. As such, thosestars exhibiting infrared excesses in the metal-poor giant sample arelikely in the asymptotic giant branch (AGB) or post-AGB phase ofevolution. There is no clear evidence for nonvariable first-ascent redgiants having been detected among the infrared-excess stars. In fact,some metal-poor red giants known to exhibit outflows in theirchromospheres do not show infrared excesses. A Population II starascending the red giant branch for the first time appears to have toolow a mass-loss rate to be recognizable as an infrared-excess star inthe IRAS PSC or FSC.

The Chemical Compositions of the SRd Variable Stars. I. XY Aquarii, RX Cephei, AB Leonis, and SV Ursae Majoris
Chemical compositions are derived from high-resolution spectra for fourstars classed as SRd variables in the General Catalogue of VariableStars. Two stars-XY Aquarii and RX Cephei-are of solar metallicity andmost likely not variable stars. Their spectroscopic effectivetemperatures and surface gravities correspond to the spectral types G0 Vfor XY Aqr and G8 III for RX Cep. Two stars are undisputed variables andshown here to be metal-poor supergiants: AB Leonis with [Fe/H] ~=-1.6and SV Ursae Majoris with [Fe/H] ~=-1.4. The metallicities and highradial velocities show them to be halo stars.

Early evolution of the Galactic halo revealed from Hipparcos observations of metal-poor stars
The kinematics of 122 red giant and 124 RR Lyrae stars in the solarneighborhood are studied using accurate measurements of their propermotions obtained by the Hipparcos astrometry satellite, combined withtheir published photometric distances, metal abundances, and radialvelocities. A majority of these sample stars have metal abundances of(Fe/H) = -1 or less and thus represent the old stellar populations inthe Galaxy. The halo component, with (Fe/H) = -1.6 or less, ischaracterized by a lack of systemic rotation and a radially elongatedvelocity ellipsoid. About 16 percent of such metal-poor stars have loworbital eccentricities, and we see no evidence of a correlation between(Fe/H) and e. Based on the model for the e-distribution of orbits, weshow that this fraction of low-e stars for (Fe/H) = -1.6 or less isexplained by the halo component alone, without introducing the extradisk component claimed by recent workers. This is also supported by theabsence of a significant change in the e-distribution with height fromthe Galactic plane. In the intermediate-metallicity range, we find thatstars with disklike kinematics have only modest effects on thedistributions of rotational velocities and e for the sample at absolutevalue of z less than 1 kpc. This disk component appears to constituteonly 10 percent for (Fe/H) between -1.6 and -1 and 20 percent for (Fe/H)between -1.4 and -1.

Carbon Isotope Ratios from the First Overtone CO Bands in Metal-Poor Giants.
We report observations of the first overtone bands of (12) CO and (13)CO using the high resolution, infrared spectrometer Phoenix to determinecarbon isotope ratios in field metal poor giant stars. The isotoperatios we have determined are in good agreement with previous work usingblue CH and red CN features. Carbon isotope ratios in metal poor starsappear to decline abruptly to very low values at log g =~ 2 on the firstascent of the giant branch. The decline is consistent with the onset ofmixing of the convective envelope into the hydrogen burning shell.Evidence for a continuing decline in the isotope ratio with increasingluminosity in metal poor giants from log g = 2 to log g = 0 is weak, butsuch a decline cannot be ruled out.

A catalogue of [Fe/H] determinations: 1996 edition
A fifth Edition of the Catalogue of [Fe/H] determinations is presentedherewith. It contains 5946 determinations for 3247 stars, including 751stars in 84 associations, clusters or galaxies. The literature iscomplete up to December 1995. The 700 bibliographical referencescorrespond to [Fe/H] determinations obtained from high resolutionspectroscopic observations and detailed analyses, most of them carriedout with the help of model-atmospheres. The Catalogue is made up ofthree formatted files: File 1: field stars, File 2: stars in galacticassociations and clusters, and stars in SMC, LMC, M33, File 3: numberedlist of bibliographical references The three files are only available inelectronic form at the Centre de Donnees Stellaires in Strasbourg, viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5), or viahttp://cdsweb.u-strasbg.fr/Abstract.html

The Infrared Ca II Triplet as a Metallicity Indicator of Stellar Populations
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1997AJ....113.1066I&db_key=AST

Magnesium and Carbon isotopes in Globular Cluster Giants. Test of Deep Mixing.II.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1996AJ....112.2639S&db_key=AST

Al, Mg and Eu Abundances in Globular Cluster Giants. I. Tests of Deep Mixing
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1996AJ....112.1517S&db_key=AST

Classification of Population II Stars in the Vilnius Photometric System. I. Methods
The methods used for classification of Population II stars in theVilnius photometric system are described. An extensive set of standardswith known astrophysical parameters compiled from the literature sourcesis given. These standard stars are classified in the Vilnius photometricsystem using the methods described. The accuracy of classification isevaluated by a comparison of the astrophysical parameters derived fromthe Vilnius photometric system with those estimated from spectroscopicstudies as well as from photometric data in other systems. For dwarfsand subdwarfs, we find a satisfactory agreement between our reddeningsand those estimated in the uvbyscriptstyle beta system. The standarddeviation of [Fe/H] deter mined in the Vilnius system is about 0.2 dex.The absolute magnitude for dwarfs and subdwarfs is estimated with anaccuracy of scriptstyle <=0.5 mag.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Vierge
Right ascension:11h51m50.11s
Declination:-05°45'44.2"
Apparent magnitude:8.175
Distance:1388.889 parsecs
Proper motion RA:-32.4
Proper motion Dec:-46.9
B-T magnitude:9.856
V-T magnitude:8.314

Catalogs and designations:
Proper Names
HD 1989HD 103036
TYCHO-2 2000TYC 4938-44-1
USNO-A2.0USNO-A2 0825-07578845
HIPHIP 57850

→ Request more catalogs and designations from VizieR