Home     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Astro Photo     The Collection     Forum     Blog New!     FAQ     Login  
→ Adopt this star  

HD 151798


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

The Geneva-Copenhagen survey of the solar neighbourhood. III. Improved distances, ages, and kinematics
Context: Ages, chemical compositions, velocity vectors, and Galacticorbits for stars in the solar neighbourhood are fundamental test datafor models of Galactic evolution. The Geneva-Copenhagen Survey of theSolar Neighbourhood (Nordström et al. 2004; GCS), amagnitude-complete, kinematically unbiased sample of 16 682 nearby F andG dwarfs, is the largest available sample with complete data for starswith ages spanning that of the disk. Aims: We aim to improve theaccuracy of the GCS data by implementing the recent revision of theHipparcos parallaxes. Methods: The new parallaxes yield improvedastrometric distances for 12 506 stars in the GCS. We also use theparallaxes to verify the distance calibration for uvby? photometryby Holmberg et al. (2007, A&A, 475, 519; GCS II). We add newselection criteria to exclude evolved cool stars giving unreliableresults and derive distances for 3580 stars with large parallax errorsor not observed by Hipparcos. We also check the GCS II scales of T_effand [Fe/H] and find no need for change. Results: Introducing thenew distances, we recompute MV for 16 086 stars, and U, V, W,and Galactic orbital parameters for the 13 520 stars that also haveradial-velocity measurements. We also recompute stellar ages from thePadova stellar evolution models used in GCS I-II, using the new valuesof M_V, and compare them with ages from the Yale-Yonsei andVictoria-Regina models. Finally, we compare the observed age-velocityrelation in W with three simulated disk heating scenarios to show thepotential of the data. Conclusions: With these revisions, thebasic data for the GCS stars should now be as reliable as is possiblewith existing techniques. Further improvement must await consolidationof the T_eff scale from angular diameters and fluxes, and the Gaiatrigonometric parallaxes. We discuss the conditions for improvingcomputed stellar ages from new input data, and for distinguishingdifferent disk heating scenarios from data sets of the size andprecision of the GCS.Full Table 1 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/501/941

Formation and Evolution of Planetary Systems: Properties of Debris Dust Around Solar-Type Stars
We present Spitzer photometric (IRAC and MIPS) and spectroscopic (IRSlow resolution) observations for 314 stars in the Formation andEvolution of Planetary Systems Legacy program. These data are used toinvestigate the properties and evolution of circumstellar dust aroundsolar-type stars spanning ages from approximately 3 Myr-3 Gyr.We identify 46 sources that exhibit excess infrared emission above thestellar photosphere at 24 μm, and 21 sources with excesses at 70μm. Five sources with an infrared excess have characteristics ofoptically thick primordial disks, while the remaining sources haveproperties akin to debris systems. The fraction of systems exhibiting a24 μm excess greater than 10.2% above the photosphere is 15% for ages< 300 Myr and declines to 2.7% for older ages. The upper envelope tothe 70 μm fractional luminosity appears to decline over a similar agerange. The characteristic temperature of the debris inferred from theIRS spectra range between 60 and 180 K, with evidence for the presenceof cooler dust to account for the strength of the 70 μm excessemission. No strong correlation is found between dust temperature andstellar age. Comparison of the observational data with disk modelscontaining a power-law distribution of silicate grains suggests that thetypical inner-disk radius is gsim 10 AU. Although the interpretation isnot unique, the lack of excess emission shortward of 16 μm and therelatively flat distribution of the 24 μm excess for ages lsim 300Myr is consistent with steady-state collisional models.

The Palomar/Keck Adaptive Optics Survey of Young Solar Analogs: Evidence for a Universal Companion Mass Function
We present results from an adaptive optics survey for substellar andstellar companions to Sun-like stars. The survey targeted 266 F5-K5stars in the 3 Myr-3 Gyr age range with distances of 10-190 pc.Results from the survey include the discovery of two brown dwarfcompanions (HD 49197B and HD 203030B), 24 new stellar binaries, and atriple system. We infer that the frequency of 0.012-0.072Msun brown dwarfs in 28-1590 AU orbits around young solaranalogs is 3.2+3.1 -2.7% (2σ limits).The result demonstrates that the deficiency of substellar companions atwide orbital separations from Sun-like stars is less pronounced than inthe radial velocity "brown dwarf desert." We infer that the massdistribution of companions in 28-1590 AU orbits around solar-mass starsfollows a continuous dN/dM 2 vprop M -0.42 relation over the 0.01-1.0 M sun secondary massrange. While this functional form is similar to that for isolatedobjects less than 0.1 M sun, over the entire 0.01-1.0 Msun range, the mass functions of companions and of isolatedobjects differ significantly. Based on this conclusion and on similarresults from other direct imaging and radial velocity companion surveysin the literature, we argue that the companion mass function follows thesame universal form over the entire range between 0 and 1590 AU inorbital semimajor axis and ≈ 0.01-20 M sun in companionmass. In this context, the relative dearth of substellar versus stellarsecondaries at all orbital separations arises naturally from theinferred form of the companion mass function.

Ca II HK emission in rapidly rotating stars. Evidence for an onset of the solar-type dynamo
We present measurements of chromospheric Ca ii H&K activity for 481solar-like stars. To determine the activity we used the Mount Wilsonmethod and a newly developed method which allows to also measure Ca iiH&K emission features in very rapidly rotating stars. The newtechnique determines the activity by comparing the line shapes fromknown inactive slowly rotating template stars that have beenartificially broadened to spectra of rapid rotators. We have analyzedsolar-like stars ranging from T_eff = 5000 to 7800 K with rotationalvelocities up to 190 km s-1 in our sample of FOCES and FEROSspectra. The effects of the rotational broadening on the two methodshave been quantified. Our method has proven to produce consistentresults where S-Index values are available and offers the possibility tomeasure the chromospheric activity at the onset of the solar-likedynamo.Table 2 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/493/1099

The Formation and Evolution of Planetary Systems: Description of the Spitzer Legacy Science Database
We present the science database produced by the Formation and Evolutionof Planetary Systems (FEPS) Spitzer Legacy program. Data reduction andvalidation procedures for the IRAC, MIPS, and IRS instruments aredescribed in detail. We also derive stellar properties for the FEPSsample from available broadband photometry and spectral types, andpresent an algorithm to normalize Kurucz synthetic spectra to opticaland near-infrared photometry. The final FEPS data products include IRACand MIPS photometry for each star in the FEPS sample and calibrated IRSspectra.

High-Dispersion Optical Spectra of Nearby Stars Younger Than the Sun
We present high-dispersion (R~16,000) optical (3900-8700 Å)spectra of 390 stars obtained with the Palomar 60 inch telescope. Themajority of stars observed are part of the Spitzer Legacy ScienceProgram ``The Formation and Evolution of Planetary Systems.'' Throughdetailed analysis we determine stellar properties for this sample,including radial and rotational velocities, Li I λ6708 andHα equivalent widths, the chromospheric activity indexR'HK, and temperature- and gravity-sensitive lineratios. Several spectroscopic binaries are also identified. From ourtabulations, we illustrate basic age- and rotation-related correlationsamong measured indices. One novel result is that Ca II chromosphericemission appears to saturate at vsini values above ~30 kms-1, similar to the well-established saturation of X-raysthat originate in the spatially separate coronal region.

The N2K Consortium. VII. Atmospheric Parameters of 1907 Metal-rich Stars: Finding Planet-Search Targets
We report high-precision atmospheric parameters for 1907 stars in theN2K low-resolution spectroscopic survey, designed to identify metal-richFGK dwarfs likely to harbor detectable planets. Of these stars, 284 arein the ideal temperature range for planet searches,Teff<=6000 K, and have a 10% or greater probability ofhosting planets based on their metallicities. The stars in thelow-resolution spectroscopic survey should eventually yield >60 newplanets, including 8-9 hot Jupiters. Short-period planets have alreadybeen discovered orbiting the survey targets HIP 14810 and HD 149143.

The Formation and Evolution of Planetary Systems: Placing Our Solar System in Context with Spitzer
We provide an overview of the Spitzer Legacy Program, Formation andEvolution of Planetary Systems, that was proposed in 2000, begun in2001, and executed aboard the Spitzer Space Telescope between 2003 and2006. This program exploits the sensitivity of Spitzer to carry outmid-infrared spectrophotometric observations of solar-type stars. With asample of ~328 stars ranging in age from ~3 Myr to ~3 Gyr, we trace theevolution of circumstellar gas and dust from primordial planet-buildingstages in young circumstellar disks through to older collisionallygenerated debris disks. When completed, our program will help define thetimescales over which terrestrial and gas giant planets are built,constrain the frequency of planetesimal collisions as a function oftime, and establish the diversity of mature planetary architectures. Inaddition to the observational program, we have coordinated a concomitanttheoretical effort aimed at understanding the dynamics of circumstellardust with and without the effects of embedded planets, dust spectralenergy distributions, and atomic and molecular gas line emission.Together with the observations, these efforts will provide anastronomical context for understanding whether our solar system-and itshabitable planet-is a common or a rare circumstance. Additionalinformation about the FEPS project can be found on the team Web site.

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

Effective temperature scale and bolometric corrections from 2MASS photometry
We present a method to determine effective temperatures, angularsemi-diameters and bolometric corrections for population I and II FGKtype stars based on V and 2MASS IR photometry. Accurate calibration isaccomplished by using a sample of solar analogues, whose averagetemperature is assumed to be equal to the solar effective temperature of5777 K. By taking into account all possible sources of error we estimateassociated uncertainties to better than 1% in effective temperature andin the range 1.0-2.5% in angular semi-diameter for unreddened stars.Comparison of our new temperatures with other determinations extractedfrom the literature indicates, in general, remarkably good agreement.These results suggest that the effective temperaure scale of FGK starsis currently established with an accuracy better than 0.5%-1%. Theapplication of the method to a sample of 10 999 dwarfs in the Hipparcoscatalogue allows us to define temperature and bolometric correction (Kband) calibrations as a function of (V-K), [m/H] and log g. Bolometriccorrections in the V and K bands as a function of T_eff, [m/H] and log gare also given. We provide effective temperatures, angularsemi-diameters, radii and bolometric corrections in the V and K bandsfor the 10 999 FGK stars in our sample with the correspondinguncertainties.

Evolution of Cold Circumstellar Dust around Solar-type Stars
We present submillimeter (Caltech Submillimeter Observatory 350 μm)and millimeter (Swedish-ESO Submillimetre Telescope [SEST] 1.2 mm, OwensValley Radio Observatory [OVRO] 3 mm) photometry for 127 solar-typestars from the Formation and Evolution of Planetary Systems SpitzerLegacy program that have masses between ~0.5 and 2.0 Msolarand ages from ~3 Myr to 3 Gyr. Continuum emission was detected towardfour stars with a signal-to-noise ratio>=3: the classical T Tauristars RX J1842.9-3532, RX J1852.3-3700, and PDS 66 with SEST, and thedebris-disk system HD 107146 with OVRO. RX J1842.9-3532 and RXJ1852.3-3700 are located in projection near the R CrA molecular cloud,with estimated ages of ~10 Myr (Neuhäuser et al.), whereas PDS 66is a probable member of the ~20 Myr old Lower Centaurus-Crux subgroup ofthe Scorpius-Centaurus OB association (Mamajek et al.). The continuumemission toward these three sources is unresolved at the 24" SESTresolution and likely originates from circumstellar accretion disks,each with estimated dust masses of ~5×10-5Msolar. Analysis of the visibility data toward HD 107146(age~80-200 Myr) indicates that the 3 mm continuum emission is centeredon the star within the astrometric uncertainties and resolved with aGaussian-fit FWHM size of (6.5"+/-1.4")×(4.2"+/-1.3"), or185AU×120 AU. The results from our continuum survey are combinedwith published observations to quantify the evolution of dust mass withtime by comparing the mass distributions for samples with differentstellar ages. The frequency distribution of circumstellar dust massesaround solar-type stars in the Taurus molecular cloud (age~2 Myr) isdistinguished from that around 3-10 Myr and 10-30 Myr old stars at asignificance level of ~1.5 and ~3 σ, respectively. These resultssuggest a decrease in the mass of dust contained in small dust grainsand/or changes in the grain properties by stellar ages of 10-30 Myr,consistent with previous conclusions. Further observations are needed todetermine if the evolution in the amount of cold dust occurs on evenshorter timescales.

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

HIPPARCOS age-metallicity relation of the solar neighbourhood disc stars
We derive age-metallicity relations (AMRs) and orbital parameters forthe 1658 solar neighbourhood stars to which accurate distances aremeasured by the HIPPARCOS satellite. The sample stars comprise 1382 thindisc stars, 229 thick disc stars, and 47 halo stars according to theirorbital parameters. We find a considerable scatter for thin disc AMRalong the one-zone Galactic chemical evolution (GCE) model. Orbits andmetallicities of thin disc stars show now clear relation each other. Thescatter along the AMR exists even if the stars with the same orbits areselected. We examine simple extension of one-zone GCE models whichaccount for inhomogeneity in the effective yield and inhomogeneous starformation rate in the Galaxy. Both extensions of the one-zone GCE modelcannot account for the scatter in age - [Fe/H] - [Ca/Fe] relationsimultaneously. We conclude, therefore, that the scatter along the thindisc AMR is an essential feature in the formation and evolution of theGalaxy. The AMR for thick disc stars shows that the star formationterminated 8 Gyr ago in the thick disc. As already reported by Grattonet al. (\cite{Gratton_et.al.2000}) and Prochaska et al.(\cite{Prochaska_et.al.2000}), thick disc stars are more Ca-rich thanthin disc stars with the same [Fe/H]. We find that thick disc stars showa vertical abundance gradient. These three facts, the AMR, verticalgradient, and [Ca/Fe]-[Fe/H] relation, support monolithic collapseand/or accretion of satellite dwarf galaxies as likely thick discformation scenarios. Tables 2 and 3 are only available in electronicform at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)or via http:/ /cdsweb.u-strasbg.fr/ cgi-bin/qcat?J/ A+A/394/927

Radial velocities in selected B-G stars
Spectroscopic observations of a sample of nearby B-G stars are reported.The observations were obtained at resolution 19 km/s in the spectralregion near the 448.1228-nm line of Mg II using a CCD-detectorspectrograph on the coude-feed telescope at KPNO on April 16-20, 1986.The data are presented in extensive tables and briefly characterized.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Ophiuchus
Right ascension:16h50m05.16s
Declination:-12°23'14.8"
Apparent magnitude:7.956
Distance:41.408 parsecs
Proper motion RA:-72.8
Proper motion Dec:-104.1
B-T magnitude:8.682
V-T magnitude:8.016

Catalogs and designations:
Proper Names
HD 1989HD 151798
TYCHO-2 2000TYC 5637-61-1
USNO-A2.0USNO-A2 0750-10075343
HIPHIP 82388

→ Request more catalogs and designations from VizieR