Home     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Astro Photo     The Collection     Forum     Blog New!     FAQ     Login  
→ Adopt this star  

HD 225041


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

The GEOS RR Lyr Survey
Not Available

Proper identification of RR Lyrae stars brighter than 12.5 mag
RR Lyrae stars are of great importance for investigations of Galacticstructure. However, a complete compendium of all RR-Lyraes in the solarneighbourhood with accurate classifications and coordinates does notexist to this day. Here we present a catalogue of 561 local RR-Lyraestars (V_max ≤ 12.5 mag) according to the magnitudes given in theCombined General Catalogue of Variable Stars (GCVS) and 16 fainter ones.The Tycho2 catalogue contains ≃100 RR Lyr stars. However, manyobjects have inaccurate coordinates in the GCVS, the primary source ofvariable star information, so that a reliable cross-identification isdifficult. We identified RR Lyrae from both catalogues based on anintensive literature search. In dubious cases we carried out photometryof fields to identify the variable. Mennessier & Colome (2002,A&A, 390, 173) have published a paper with Tyc2-GCVSidentifications, but we found that many of their identifications arewrong.

RR Lyrae stars: kinematics, orbits and z-distribution
RR Lyrae stars in the Milky Way are good tracers to study the kinematicbehaviour and spatial distribution of older stellar populations. Arecently established well documented sample of 217 RR Lyr stars withV<12.5 mag, for which accurate distances and radial velocities aswell as proper motions from the Hipparcos and Tycho-2 catalogues areavailable, has been used to reinvestigate these structural parameters.The kinematic parameters allowed to calculate the orbits of the stars.Nearly 1/3 of the stars of our sample have orbits staying near the MilkyWay plane. Of the 217 stars, 163 have halo-like orbits fulfilling one ofthe following criteria: Θ < 100 km s-1, orbiteccentricity >0.4, and normalized maximum orbital z-distance>0.45. Of these stars roughly half have retrograde orbits. Thez-distance probability distribution of this sample shows scale heightsof 1.3±0.1 kpc for the disk component and 4.6±0.3 kpc forthe halo component. With our orbit statistics method we found a(vertical) spatial distribution which, out to z=20 kpc, is similar tothat found with other methods. This distribution is also compatible withthe ones found for blue (HBA and sdB) halo stars. The circular velocityΘ, the orbit eccentricity, orbit z-extent and [Fe/H] are employedto look for possible correlations. If any, it is that the metal poorstars with [Fe/H] <1.0 have a wide symmetric distribution aboutΘ=0, thus for this subsample on average a motion independent ofdisk rotation. We conclude that the Milky Way possesses a halo componentof old and metal poor stars with a scale height of 4-5 kpc having randomorbits. The presence in our sample of a few metal poor stars (thus partof the halo population) with thin disk-like orbits is statistically notsurprising. The midplane density ratio of halo to disk stars is found tobe 0.16, a value very dependent on proper sample statistics.

Photoelectric Minima of Selected Eclipsing Binaries and Maxima of Pulsating Stars
Not Available

Iron abundances derived from RR Lyrae light curves and low-dispersion spectroscopy
With the aid of the All Sky Automated Survey (ASAS) database on theGalactic field, we compare the iron abundances of fundamental mode RRLyrae stars derived from the Fourier parameters with those obtained fromlow-dispersion spectroscopy. We show from a set of 79 stars, distinctfrom the original calibrating sample of the Fourier method and selectedwithout quality control, that almost all discrepant estimates are theresults of some defects or peculiarities either in the photometry or inthe spectroscopy. Omitting objects deviating by more than 0.4 dex, theremaining subsample of 64 stars yields Fourier abundances that fit thespectroscopic ones with σ=0.20 dex. Other, more stringentselection criteria and different Fourier decompositions lead to smallersubsamples and concomitant better agreement, down to σ=0.16 dex.Except perhaps for two variables among the 163 stars, comprised of theASAS variables and those of the original calibrating set of the Fouriermethod, all discrepant values can be accounted for by observationalnoise and insufficient data coverage. We suggest that the agreement canbe further improved when new, more accurate spectroscopic data becomeavailable for a test with the best photometric data. As a by-product ofthis analysis, we also compute revised periods and select Blazhkovariables.

Subsystems of RR Lyrae Variable Stars in Our Galaxy
We have used published, high-accuracy, ground-based and satelliteproper-motion measurements, a compilation of radial velocities, andphotometric distances to compute the spatial velocities and Galacticorbital elements for 174 RR Lyrae (ab) variable stars in the solarneighborhood. The computed orbital elements and published heavy-elementabundances are used to study relationships between the chemical,spatial, and kinematic characteristics of nearby RR Lyrae variables. Weobserve abrupt changes of the spatial and kinematic characteristics atthe metallicity [Fe/H]≈-0.95 and also when the residual spatialvelocities relative to the LSR cross the critical value V res≈290km/s. This provides evidence that the general population of RR Lyraestars is not uniform and includes at least three subsystems occupyingdifferent volumes in the Galaxy. Based on the agreement between typicalparameters for corresponding subsystems of RR Lyrae stars and globularclusters, we conclude that metal-rich stars and globular clusters belongto a rapidly rotating and fairly flat, thick-disk subsystem with a largenegative vertical metallicity gradient. Objects with larger metaldeficiencies can, in turn, be subdivided into two populations, but usingdifferent criteria for stars and clusters. We suggest that field starswith velocities below the critical value and clusters with extremelyblue horizontal branches form a spherical, slowly rotating subsystem ofthe protodisk halo, which has a common origin with the thick disk; thissubsystem has small but nonzero radial and vertical metallicitygradients. The dimensions of this subsystem, estimated from theapogalactic radii of orbits of field stars, are approximately the same.Field stars displaying more rapid motion and clusters with redderhorizontal branches constitute the spheroidal subsystem of the accretedouter halo, which is approximately a factor of three larger in size thanthe first two subsystems. It has no metallicity gradients; most of itsstars have eccentric orbits, many display retrograde motion in theGalaxy, and their ages are comparatively low, supporting the hypothesisthat the objects in this subsystem had an extragalactic origin.

Bias Properties of Extragalactic Distance Indicators. XI. Methods to Correct for Observational Selection Bias for RR Lyrae Absolute Magnitudes from Trigonometric Parallaxes Expected from the Full-Sky Astrometric Mapping Explorer Satellite
A short history is given of the development of the correction forobservation selection bias inherent in the calibration of absolutemagnitudes using trigonometric parallaxes. The developments have beendue to Eddington, Jeffreys, Trumpler & Weaver, Wallerstein,Ljunggren & Oja, West, Lutz & Kelker, after whom the bias isnamed, Turon Lacarrieu & Crézé, Hanson, Smith, andmany others. As a tutorial to gain an intuitive understanding of severalcomplicated trigonometric bias problems, we study a toy bias model of aparallax catalog that incorporates assumed parallax measuring errors ofvarious severities. The two effects of bias errors on the derivedabsolute magnitudes are (1) the Lutz-Kelker correction itself, whichdepends on the relative parallax error δπ/π and the spatialdistribution, and (2) a Malmquist-like ``incompleteness'' correction ofopposite sign due to various apparent magnitude cutoffs as they areprogressively imposed on the catalog. We calculate the bias propertiesusing simulations involving 3×106 stars of fixedabsolute magnitude using Mv=+0.6 to imitate RR Lyraevariables in the mean. These stars are spread over a spherical volumebounded by a radius 50,000 pc with different spatial densitydistributions. The bias is demonstrated by first using a fixed rmsparallax uncertainty per star of 50 μas and then using a variable rmsaccuracy that ranges from 50 μas at apparent magnitude V=9 to 500μas at V=15 according to the specifications for the Full-SkyAstrometric Mapping Explorer (FAME) satellite to be launched in 2004.The effects of imposing magnitude limits and limits on the``observer's'' error, δπ/π, are displayed. We contrast themethod of calculating mean absolute magnitude directly from theparallaxes where bias corrections are mandatory, with an inverse methodusing maximum likelihood that is free of the Lutz-Kelker bias, althougha Malmquist bias is present. Simulations show the power of the inversemethod. Nevertheless, we recommend reduction of the data using bothmethods. Each must give the same answer if each is freed from systematicerror. Although the maximum likelihood method will, in theory, eliminatemany of the bias problems of the direct method, nevertheless the biascorrections required by the direct method can be determined empiricallyvia Spaenhauer diagrams immediately from the data, as discussed in theearlier papers of this series. Any correlation of the absolute(trigonometric) magnitudes with the (trigonometric) distances is thebias. We discuss the level of accuracy that can be expected in acalibration of RR Lyrae absolute magnitudes from the FAME data over themetallicity range of [Fe/H] from 0 to -2, given the known frequency ofthe local RR Lyrae stars closer than 1.5 kpc. Of course, use will alsobe made of the entire FAME database for the RR Lyrae stars over thecomplete range of distances that can be used to empirically determinethe random and systematic errors from the FAME parallax catalog, usingcorrelations of derived absolute magnitude with distance and position inthe sky. These bias corrections are expected to be much more complicatedthan only a function of apparent magnitude because of variousrestrictions due to orbital constraints on the spacecraft.

Absolute Magnitudes and Kinematic Parameters of the Subsystem of RR Lyrae Variables
The statistical parallax technique is applied to a sample of 262 RRabLyrae variables with published photoelectric photometry, metallicities,and radial velocities and with measured absolute proper motions.Hipparcos, PPM, NPM, and the Four-Million Star Catalog (Volchkov et al.1992) were used as the sources of proper motions; the proper motionsfrom the last three catalogs were reduced to the Hipparcos system. Wedetermine parameters of the velocity distribution for halo [(U_0, V_0,W_0) = (-9 +/- 12, -214 +/- 10, -16 +/- 7) km/s and (sigma_U, sigma_V,sigma_W) = (164 +/- 11, 105 +/- 7, 95 +/- 7) km/s] and thick-disk [(U_0,V_0, W_0) = (-16 +/- 8, -41 +/- 7, -18 +/- 5) km/s and (sigma_U,sigma_V, sigma_W) = (53 +/- 9, 42 +/- 8, 26 +/- 5) km/s] RR Lyrae, aswell as the intensity-averaged absolute magnitude for RR Lyrae of thesepopulations: = 0.77 +/- 0.10 and = +1.11 +/-0.28 for the halo and thick-disk objects, respectively. The metallicitydependence of the absolute magnitude of RR Lyrae is analyzed(=(0.76 +/- 0.12) + (0.26 +/- 0.26) x ([Fe/H] + 1.6) = 1.17 +0.26 x [Fe/H]). Our results are in satisfactory agreement with the_(RR)-[Fe/H] relation from Carney et al. (1992)(_(RR) = 1.01 + 0.15 x [Fe/H]) obtained by Baade-Wesselink'smethod. They provide evidence for a short distance scale: the LMCdistance modulus and the distance to the Galactic center are 18.22 +/-0.11 and 7.4 +/-±0.5 kpc, respectively. The zero point ofthe distance scale and the kinematic parameters of the RR Lyraepopulations are shown to be virtually independent of the source ofabsolute proper motions used and of whether they are reduced to theHipparcos system or not.

Stars with the Largest Hipparcos Photometric Amplitudes
A list of the 2027 stars that have the largest photometric amplitudes inHipparcos Photometry shows that most variable stars are all Miras. Thepercentage of variable types change as a function of amplitude. Thiscompilation should also be of value to photometrists looking forrelatively unstudied, but large amplitude stars.

Revised Prediction Elements For 33 Southern RR Lyrae Stars
Visual observations in the AAVSO International Database of 23 RR Lyraestars of southern declination have been reduced; revised maximaprediction elements are given for 21 of these stars. Maxima predictionelements are established for RZ Cap and AN Cap.

Kinematics of Metal-poor Stars in the Galaxy. II. Proper Motions for a Large Nonkinematically Selected Sample
We present a revised catalog of 2106 Galactic stars, selected withoutkinematic bias and with available radial velocities, distance estimates,and metal abundances in the range -4.0<=[Fe/H]<=0.0. This updateof the 1995 Beers & Sommer-Larsen catalog includes newly derivedhomogeneous photometric distance estimates, revised radial velocitiesfor a number of stars with recently obtained high-resolution spectra,and refined metallicities for stars originally identified in the HKobjective-prism survey (which account for nearly half of the catalog)based on a recent recalibration. A subset of 1258 stars in this cataloghave available proper motions based on measurements obtained with theHipparcos astrometry satellite or taken from the updated AstrographicCatalogue (second epoch positions from either the Hubble Space TelescopeGuide Star Catalog or the Tycho Catalogue), the Yale/San Juan SouthernProper Motion Catalog 2.0, and the Lick Northern Proper Motion Catalog.Our present catalog includes 388 RR Lyrae variables (182 of which arenewly added), 38 variables of other types, and 1680 nonvariables, withdistances in the range 0.1 to 40 kpc.

The absolute magnitudes of RR Lyraes from HIPPARCOS parallaxes and proper motions
We have used HIPPARCOS proper motions and the method of StatisticalParallax to estimate the absolute magnitude of RR Lyrae stars. Inaddition we used the HIPPARCOS parallax of RR Lyrae itself to determineit's absolute magnitude. These two results are in excellent agreementwith each other and give a zero-point for the RR Lyrae M_v,[Fe/H]relation of 0.77+/-0.15 at [Fe/H]=-1.53. This zero-point is in goodagreement with that obtained recently by several groups usingBaade-Wesselink methods which, averaged over the results from thedifferent groups, gives M_v = 0.73+/-0.14 at [Fe/H]=-1.53. Taking theHIPPARCOS based zero-point and a value of 0.18+/-0.03 for the slope ofthe M_v,[Fe/H] relation from the literature we find firstly, thedistance modulus of the LMC is 18.26+/-0.15 and secondly, the mean ageof the Globular Clusters is 17.4+/-3.0 GYrs. These values are comparedwith recent estimates based on other "standard candles" that have alsobeen calibrated with HIPPARCOS data. It is clear that, in addition toastrophysical problems, there are also problems in the application ofHIPPARCOS data that are not yet fully understood. Table 1, whichcontains the basic data for the RR Lyraes, is available only at CDS. Itmay be retrieved via anonymous FTP at cdsarc.u-strasbg.fr (130.79.128.5)or via the Web at http://cdsweb.u-strasbg.fr/Abstract.html

Early evolution of the Galactic halo revealed from Hipparcos observations of metal-poor stars
The kinematics of 122 red giant and 124 RR Lyrae stars in the solarneighborhood are studied using accurate measurements of their propermotions obtained by the Hipparcos astrometry satellite, combined withtheir published photometric distances, metal abundances, and radialvelocities. A majority of these sample stars have metal abundances of(Fe/H) = -1 or less and thus represent the old stellar populations inthe Galaxy. The halo component, with (Fe/H) = -1.6 or less, ischaracterized by a lack of systemic rotation and a radially elongatedvelocity ellipsoid. About 16 percent of such metal-poor stars have loworbital eccentricities, and we see no evidence of a correlation between(Fe/H) and e. Based on the model for the e-distribution of orbits, weshow that this fraction of low-e stars for (Fe/H) = -1.6 or less isexplained by the halo component alone, without introducing the extradisk component claimed by recent workers. This is also supported by theabsence of a significant change in the e-distribution with height fromthe Galactic plane. In the intermediate-metallicity range, we find thatstars with disklike kinematics have only modest effects on thedistributions of rotational velocities and e for the sample at absolutevalue of z less than 1 kpc. This disk component appears to constituteonly 10 percent for (Fe/H) between -1.6 and -1 and 20 percent for (Fe/H)between -1.4 and -1.

The Absolute Magnitude and Kinematics of RR Lyrae Stars Via Statistical Parallax
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1996AJ....112.2110L&db_key=AST

The Rotation of RR Lyrae Stars
We report upper limits to rotation from the measurement of line breadthsvia cross-correlation analysis for 27 RR Lyrae variables. The eightbest-observed stars of type RRab show the same variation of breadth withphase: the breadth peaks sharply during the rise to maximum light, dropsgradually, and reaches a broad minimum during the phase of maximumradius. During this phase the breadth is always narrow, consistent withinstrumental resolution and turbulence alone. For the threewell-observed RRc variables, the breadth is this narrow at all phasesexcept for a slight increase during the rise to maximum light. Theremaining stars also conform to these patterns, albeit with sparse phasecoverage and lower signal-to-noise ratio. We interpret these results asindicating that lines are broadened in RRab stars by shock-inducedplumes or turbulence during the rise to maximum light, and perhaps byother causes as well, but not by rotation in RR Lyrae stars of eithertype. We estimate an upper limit of v sin i < 10 km s-1 in all cases.This is in stark contrast to the rotation seen in field blue horizontalbranch stars, where v sin i > 10 km s-1 in three out of sixwell-studied field stars, and to the more rapid rotation, oftenexceeding 100 km s-1, of the Population I delta Scuti variables whichoccupy adjacent regions of the instability strip.

Accurate Positions Of Variable Stars Near The South Galactic Pole
Not Available

Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue.
We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.

The Metallicities and Kinematics of RR Lyrae Variables.II. Galactic Structure and Formation from Local Stars
Abstract image available at:http://adsabs.harvard.edu/abs/1995AJ....110.2288L

Kinematics of metal-poor stars in the galaxy
We discuss the kinematic properties of a sample of 1936 Galactic stars,selected without kinematic bias, and with abundances (Fe/H) is less thanor equal to -0.6. The stars selected for this study all have measuredradial velocities, and the majority have abundances determined fromspectroscopic or narrow-/intermediate-band photometric techniques. Incontrast to previous examinations of the kinematics of the metal-poorstars in the Galaxy, our sample contains large numbers of stars that arelocated at distances in excess of 1 kpc from the Galactic plane. Thus, amuch clearer picture of the nature of the metal-deficient populations inthe Galaxy can now be drawn.

The metallicities and kinematics of RR Lyrae variables, 1: New observations of local stars
In order to study the structure and formation history of the galaxy, wehave obtained low-to-moderate dispersion spectra of 302 nearby RR Lyraevariables of Bailey type 'ab'. We derived abundances, typically accurateto 0.15-0.20 dex and calibrated to the Zinn & West (1984) globularcluster metallicity scale, from the pseudoequivalent widths of the Ca IIK, H delta, H gamma, and H beta lines. Radial velocities accurate tobetween 2 and 30 km/s were obtained from the spectra and from theliterature. Distances accurate to between 5% and 20% were derived frompublished apparent magnitudes and Burstein & Heiles (1982)reddenings. The metallicity distribution of the RR Lyrae stars peaks at(Fe/H)K approximately equals -1.5, and is narrower than thatof the Ryan & Norris (1991) subdwarfs, as expected since the mostmetal-rich and metal-poor progenitors preferentially appear as stablered and blue horizontal branch stars, rather than as RR Lyrae. Themetal-rich tail of the RR Lyrae distribution extends to(Fe/H)K approximately equals 0, and a qualitative analysis ofthe distribution of distances from the galactic plane shows that thestars in this tail (i.e., (Fe/H)K greater than -1.0) are moreconcentrated to the plane than the more metal-poor stars. The abundancedistribution of the local RR Lyrae stars is in excellent agreement withthe changing abundance distributions of distant RR Lyrae stars as afunction of galactocentric distance, as derived by Suntzeff et al.(1991), who ascribed this change to systematic variation in horizontalbranch morphology (probably age variations) with galactocentricdistance. The abundance distribution of the local RR Lyrae stars alsoagrees well with those of the distant RR Lyrae stars as a function ofdistance from the galactic plane. There is no evidence for an abundancegradient in this direction, suggesting that gaseous dissipation did notplay a major role in the formation of the outer halo.

The Oosterhoff period-metallicity relation for RR Lyrae stars at the blue fundamental edge of the instability strip.
It is argued that the division of cluster variables into two nearlydiscrete period groups, which is the Oosterhoff dichotomy, is due to acombination of the continuous variation of period with metallicity andthe blueward progression of cluster horizontal branches such as M13 outof the instability strip for intermediate metallicities for (Fe/H)between about -1.7 and -1.9. The subsequent evolutionary tracks,starting beyond the blue side of the instability strip, move into thestrip above the zero-age horizontal branch, producing longer periods inthis metallicity range. The strong variation of period with metallicityis seen both in the cluster data and in the field star data.

Infrared photometry and radial velocities of field RR Lyraes
Infrared photometry of 110 field RR Lyraes is presented along withradial velocities of 13 field RR Lyraes. The methods used are described.

The reddening of type AB RR Lyrae stars
The paper modifies Sturch's (1966) method for deriving, from observednear-minimum light colors, EB-V values for RR Lyrae starswith Bailey's types for a or b light curves in order to avoid the use ofreddening and metallicity-sensitive U-B colors. The Delta(S), (Fe/H)calibration is examined, and blanketing corrections are derived fromsynthetic colors of models by Kurucz (1975, 1979). Sturch's finding thatthe intrinsic blanketing-corrected near-minimum light B-V color of avariable can be estimated from its period is verified. The inherentaccuracy of the method is discussed and found to depend appreciably oncycle-to-cycle color variations. Comparisons are made with otherreddening determinations. The blanketing corrections determined bySturch from delta(U-B) values are found to make his EB-Vvalues less than those found in the present study, while his estimatedintrinsic colors make his EB-V values greater than thosefound in this study.

Detection of a galactic color gradient for blue horizontal-branch stars of the halo field and implications for the halo age and density distributions
Abstract image available at:http://adsabs.harvard.edu/abs/1991ApJ...375..121P

Population studies. II - Kinematics as a function of abundance and galactocentric position for (Fe/H) of -0.6 or less
A catalog is presented of some 1200 Galactic objects which have radialvelocities and (Fe/H) abundances of -0.6 or less. These data areanalyzed to yield information on the kinematic properties of the olderpopulations of the Galaxy and on the interdependence between kinematicsand abundance. It is found that the kinematics of the availablekinematically selected stars differ from those of the nonkinematicallyselected objects. No evidence is found for any significant difference inthe kinematic properties of the various halo subgroups, nor for anydependence of kinematics on abundance. While the rotation of the halo issmall at about 37 km/s for (Fe/H) of -1.2 or less, it rises quickly forhigher abundances to a value of about 160 km/s at (Fe/H) = 0.6. Objectsin the abundance range -0.9 to -0.6 appear to belong predominantly to apopulation possessing the kinematic characteristics of a thick disk. Theimplications of these findings for the suggestion that globular clustersbelong to the same population as the noncluster objects, for the originof the thick disk, and for the mass of the Galaxy are discussed.

Bibliographic Catalogue of Stellar Radical Velocities
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1986A&AS...65...59B&db_key=AST

Absolute magnitudes and kinematic properties of RR Lyrae stars
A maximum-likelihood statistical analysis of several subgroups of thefield RR Lyrae stars was performed to determine the relative solarmotion, velocity ellipsoid parameters, and mean absolute visualmagnitude for each group. The full sample of 159 stars was taken from arecent Chinese proper-motion survey, and new mean radial velocities wereused for 46 of the stars. A geometric minimization technique known assimplex optimization was used to apply a rigorous maximum-likelihoodmodel to the data. The best estimate for the mean absolute visualmagnitude is 0.76 + or - 0.14 mag for the entire RR ab-type sample.

On optical studies of high-velocity clouds
Lists of distant objects that can be used to study physical conditionsin, and distances of, 21 cm (Oort) high-velocity clouds are presented.Recent published observations are used to compile positions, velocities,and distances of the clouds.

Radial velocities of RR Lyrae stars
The authors obtained 283 spectra of 57 RR Lyrae stars using the 2.1-mtelescope at McDonald Observatory. Radial velocities were determinedusing a software cross-correlation technique. New mean radial velocitieswere determined for 46 of the stars.

A search for halo gradients through RR Lyrae pulsators.
Abstract image available at:http://adsabs.harvard.edu/abs/1983A&A...128...64C

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Sculpteur
Right ascension:00h02m48.11s
Declination:-24°56'43.1"
Apparent magnitude:10.327
Proper motion RA:50.1
Proper motion Dec:-22.8
B-T magnitude:10.564
V-T magnitude:10.347

Catalogs and designations:
Proper Names
HD 1989HD 225041
TYCHO-2 2000TYC 6412-619-1
USNO-A2.0USNO-A2 0600-00021646
HIPHIP 226

→ Request more catalogs and designations from VizieR