Home     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Astro Photo     The Collection     Forum     Blog New!     FAQ     Login  
→ Adopt this star  

HD 139498


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

The Formation and Evolution of Planetary Systems: Placing Our Solar System in Context with Spitzer
We provide an overview of the Spitzer Legacy Program, Formation andEvolution of Planetary Systems, that was proposed in 2000, begun in2001, and executed aboard the Spitzer Space Telescope between 2003 and2006. This program exploits the sensitivity of Spitzer to carry outmid-infrared spectrophotometric observations of solar-type stars. With asample of ~328 stars ranging in age from ~3 Myr to ~3 Gyr, we trace theevolution of circumstellar gas and dust from primordial planet-buildingstages in young circumstellar disks through to older collisionallygenerated debris disks. When completed, our program will help define thetimescales over which terrestrial and gas giant planets are built,constrain the frequency of planetesimal collisions as a function oftime, and establish the diversity of mature planetary architectures. Inaddition to the observational program, we have coordinated a concomitanttheoretical effort aimed at understanding the dynamics of circumstellardust with and without the effects of embedded planets, dust spectralenergy distributions, and atomic and molecular gas line emission.Together with the observations, these efforts will provide anastronomical context for understanding whether our solar system-and itshabitable planet-is a common or a rare circumstance. Additionalinformation about the FEPS project can be found on the team Web site.

Formation and Evolution of Planetary Systems (FEPS): Primordial Warm Dust Evolution from 3 to 30 Myr around Sun-like Stars
We present data obtained with the Infrared Array Camera (IRAC) aboardthe Spitzer Space Telescope (Spitzer) for a sample of 74 young (t<30Myr old) Sun-like (0.7

Evolution of Cold Circumstellar Dust around Solar-type Stars
We present submillimeter (Caltech Submillimeter Observatory 350 μm)and millimeter (Swedish-ESO Submillimetre Telescope [SEST] 1.2 mm, OwensValley Radio Observatory [OVRO] 3 mm) photometry for 127 solar-typestars from the Formation and Evolution of Planetary Systems SpitzerLegacy program that have masses between ~0.5 and 2.0 Msolarand ages from ~3 Myr to 3 Gyr. Continuum emission was detected towardfour stars with a signal-to-noise ratio>=3: the classical T Tauristars RX J1842.9-3532, RX J1852.3-3700, and PDS 66 with SEST, and thedebris-disk system HD 107146 with OVRO. RX J1842.9-3532 and RXJ1852.3-3700 are located in projection near the R CrA molecular cloud,with estimated ages of ~10 Myr (Neuhäuser et al.), whereas PDS 66is a probable member of the ~20 Myr old Lower Centaurus-Crux subgroup ofthe Scorpius-Centaurus OB association (Mamajek et al.). The continuumemission toward these three sources is unresolved at the 24" SESTresolution and likely originates from circumstellar accretion disks,each with estimated dust masses of ~5×10-5Msolar. Analysis of the visibility data toward HD 107146(age~80-200 Myr) indicates that the 3 mm continuum emission is centeredon the star within the astrometric uncertainties and resolved with aGaussian-fit FWHM size of (6.5"+/-1.4")×(4.2"+/-1.3"), or185AU×120 AU. The results from our continuum survey are combinedwith published observations to quantify the evolution of dust mass withtime by comparing the mass distributions for samples with differentstellar ages. The frequency distribution of circumstellar dust massesaround solar-type stars in the Taurus molecular cloud (age~2 Myr) isdistinguished from that around 3-10 Myr and 10-30 Myr old stars at asignificance level of ~1.5 and ~3 σ, respectively. These resultssuggest a decrease in the mass of dust contained in small dust grainsand/or changes in the grain properties by stellar ages of 10-30 Myr,consistent with previous conclusions. Further observations are needed todetermine if the evolution in the amount of cold dust occurs on evenshorter timescales.

Post-T Tauri Stars in the Nearest OB Association
We present results of a spectroscopic survey of X-ray- andproper-motion-selected samples of late-type stars in the LowerCentaurus-Crux (LCC) and Upper Centaurus-Lupus (UCL) subgroups of thenearest OB association: Scorpius-Centaurus. The primary goals of thesurvey are to determine the star formation history of the OB subgroupsand to assess the frequency of accreting stars in a sample dominated by``post-T Tauri'' pre-main-sequence (PMS) stars. We investigate twosamples: (1) proper-motion candidates from the ACT Catalog and TychoReference Catalog (TRC) with X-ray counterparts in the ROSAT All-SkySurvey (RASS) Bright Source Catalog and (2) G- and K-type stars in theHipparcos catalog found to be candidate members by de Zeeuw et al. Weobtained optical spectra of 130 candidates with the Siding Spring 2.3 mdual-beam spectrograph. PMS stars were identified by (1) strong Liλ6707 absorption, (2) subgiant surface gravities, (3) propermotions consistent with Sco-Cen membership, and (4) H-R diagrampositions consistent with being PMS. We find 93% of the RASS-ACT/TRCstars to be probable PMS members, compared with 73% of the Hipparcoscandidates. We demonstrate that measuring the gravity-sensitive bandratio of Sr II λ4077 to Fe I λ4071 is a valuable means ofdiscriminating PMS and zero-age main-sequence (ZAMS) stars. Usingsecular parallaxes and Hipparcos, Tycho-2, and Two Micron All Sky Surveyphotometry, we construct an H-R diagram. Depending on the choice ofpublished evolutionary tracks, we find the mean ages of the PMSpopulations to range between 17 and 23 Myr for LCC and 15 and 22 Myr forUCL. Taking into account observational errors, it appears that 95% ofthe low-mass star formation in each subgroup must have occurred in lessthan 8 Myr (LCC) and 12 Myr (UCL). Using the Bertelli et al. tracks, wefind main-sequence turnoff ages for Hipparcos B-type members to be16+/-1 Myr for LCC and 17+/-1 Myr for UCL. Contrary to previousfindings, it appears that LCC is coeval with, or slightly older than,UCL. The secular parallaxes of the Sco-Cen PMS stars yield distances of85-215 pc, with 12 of the LCC members lying within 100 pc of the Sun.Only one out of 110 (0.9+2.1-0.8%; 1 σ) PMSsolar-type stars in the sample with ages of 13+/-1 (s.e.)+/-6 (1σ) Myr and masses of 1.3+/-0.2 (1 σ) Msolar showsboth enhanced Hα emission and a K-band excess indicative ofaccretion from a truncated circumstellar disk: the nearby (d~=86 pc)classical T Tauri star PDS 66.

Two-colour photometry for 9473 components of close Hipparcos double and multiple stars
Using observations obtained with the Tycho instrument of the ESAHipparcos satellite, a two-colour photometry is produced for componentsof more than 7 000 Hipparcos double and multiple stars with angularseparations 0.1 to 2.5 arcsec. We publish 9473 components of 5173systems with separations above 0.3 arcsec. The majority of them did nothave Tycho photometry in the Hipparcos catalogue. The magnitudes arederived in the Tycho B_T and V_T passbands, similar to the Johnsonpassbands. Photometrically resolved components of the binaries withstatistically significant trigonometric parallaxes can be put on an HRdiagram, the majority of them for the first time. Based on observationsmade with the ESA Hipparcos satellite.

Observations of double stars and new pairs. XV
The study reports visual and photographic measures listed for 1150 pairsobtained in the time frame 1989.91-1992.15, including 221 new doublestars. Magnitudes were estimated for a part of the objects, especiallythe fainter ones. Plate orientations were calculated from field stars ofknown positions and were precessed to the epoch; numbers of nights andof measured exposures are given. Reobservation of faint, neglected pairsreveal many corrections to the data from the old discovery lists.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Balance
Right ascension:15h39m24.41s
Declination:-27°10'21.9"
Apparent magnitude:9.575
Proper motion RA:-20.2
Proper motion Dec:-29.8
B-T magnitude:10.457
V-T magnitude:9.648

Catalogs and designations:
Proper Names
HD 1989HD 139498
TYCHO-2 2000TYC 6785-510-1
USNO-A2.0USNO-A2 0600-18455097
HIPHIP 76673

→ Request more catalogs and designations from VizieR