Home     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Astro Photo     The Collection     Forum     Blog New!     FAQ     Login  
→ Adopt this star  

TYC 9116-260-1


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

M dwarfs: effective temperatures, radii and metallicities
We empirically determine effective temperatures and bolometricluminosities for a large sample of nearby M dwarfs, for which highaccuracy optical and infrared photometry is available. We introduce anew technique which exploits the flux ratio in different bands as aproxy of both effective temperature and metallicity. Our temperaturescale for late-type dwarfs extends well below 3000K (almost to the browndwarf limit) and is supported by interferometric angular diametermeasurements above 3000K. Our metallicities are in excellent agreement(usually within 0.2dex) with recent determinations via independenttechniques. A subsample of cool M dwarfs with metallicity estimatesbased on hotter Hipparcos common proper motion companions indicates ourmetallicities are also reliable below 3000K, a temperature rangeunexplored until now. The high quality of our data allows us to identifya striking feature in the bolometric luminosity versus temperatureplane, around the transition from K to M dwarfs. We have compared oursample of stars with theoretical models and conclude that thistransition is due to an increase in the radii of the M dwarfs, a featurewhich is not reproduced by theoretical models.

Bayesian inference of stellar parameters and interstellar extinction using parallaxes and multiband photometry
Astrometric surveys provide the opportunity to measure the absolutemagnitudes of large numbers of stars, but only if the individualline-of-sight extinctions are known. Unfortunately, extinction is highlydegenerate with stellar effective temperature when estimated frombroad-band optical/infrared photometry. To address this problem, Iintroduce a Bayesian method for estimating the intrinsic parameters of astar and its line-of-sight extinction. It uses both photometry andparallaxes in a self-consistent manner in order to provide anon-parametric posterior probability distribution over the parameters.The method makes explicit use of domain knowledge by employing theHertzsprung-Russell Diagram (HRD) to constrain solutions and to ensurethat they respect stellar physics. I first demonstrate this method byusing it to estimate effective temperature and extinction from BVJHKdata for a set of artificially reddened Hipparcos stars, for whichaccurate effective temperatures have been estimated from high-resolutionspectroscopy. Using just the four colours, we see the expected strongdegeneracy (positive correlation) between the temperature andextinction. Introducing the parallax, apparent magnitude and the HRDreduces this degeneracy and improves both the precision (reduces theerror bars) and the accuracy of the parameter estimates, the latter byabout 35 per cent. The resulting accuracy is about 200 K in temperatureand 0.2 mag in extinction. I then apply the method to estimate theseparameters and absolute magnitudes for some 47 000 F, G, K Hipparcosstars which have been cross-matched with Two-Micron All-Sky Survey(2MASS). The method can easily be extended to incorporate the estimationof other parameters, in particular metallicity and surface gravity,making it particularly suitable for the analysis of the 109stars from Gaia.

Characterization of Dusty Debris Disks: The IRAS and Hipparcos Catalogs
Dusty debris disks around main-sequence stars are signposts for theexistence of planetesimals and exoplanets. From cross-correlatingHipparcos stars with the IRAS catalogs, we identify 146 stars within 120pc of Earth that show excess emission at 60 μm. This search tookspecial precautions to avoid false positives. Our sample is reasonablywell distributed from late B to early K-type stars, but it contains veryfew later type stars. Even though IRAS flew more than 20 years ago andmany astronomers have cross-correlated its catalogs with stellarcatalogs, we were still able to newly identify debris disks at as manyas 33 main-sequence stars; of these, 32 are within 100 pc of Earth. Thepower of an all-sky survey satellite like IRAS is evident when comparingour 33 new debris disks with the total of only 22 dusty debris diskstars first detected with the more sensitive, but pointed, satelliteISO. Our investigation focuses on the mass, dimensions, and evolution ofdusty debris disks.

UBV(RI)C photometry of Hipparcos red stars
We present homogeneous and standardized UBV(RI)C photometryfor nearly 550 M stars selected from the Hipparcos satellite data baseusing the following selection criteria: lack of obvious variability (noHipparcos variability flag); δ<+10°(V-I)>1.7 and Vmagnitude fainter than about 7.6. Comparisons are made between thecurrent photometry, other ground-based data sets and Hipparcosphotometry. We use linear discriminant analysis to determine aluminosity segregation criterion for late-type stars, and principalcomponent analysis to study the statistical structure of the colourindices and to calibrate absolute magnitude in terms of (V-I) for thedwarf stars. Various methods are used to determine the mean absolutemagnitude of the giant stars. We find 10 dwarf stars, apparentlypreviously unrecognized (prior to Hipparcos) as being within 25pc,including five within 20pc.

Detection of moving clusters by a method of cinematic pairs
The algorithm of revealing of pairs stars with common movement isoffered and is realized. The basic source is the catalogue HIPPARCOS. Onconcentration of kinematic pairs it is revealed three unknown earliermoving clusters in constellations: 1) Phe, 2) Cae, 3) Hor and, wellknown, in 4) UMa are revealed. On an original technique the members ofclusters -- all 87 stars are allocated. Coordinates of the clustersconvergent point α, delta; (in degrees), spatial speed (in km/s)and age (in 106 yr) from isochrone fitting have made: 1) 51,-29, 19.0, 500, 5/6; 2) 104, -32, 23.7, 300, 9/12; 3) 119, -27, 22.3,100, 9/22; 4) 303, -31, 16.7, 500, 16/8 accordingly. Numerator offraction -- number of stars identified as the members of clusters,denominator -- number of the probable members (with unknown radialspeeds). The preliminary qualitative analysis of clusters spatialstructure is carried in view of their dynamic evolution.

New light on faint stars. I - The luminosity function in the solar neighbourhood
From photoelectric photometry of red dwarf stars identified in anobjective prism survey, a magnitude-limited complete sample has beendefined. Applying photometric parallaxes, calibrated for theKron-Cousins system by observations of trigonometric parallax stars,this sample is used to determine the space densities of stars withabsolute magnitudes between + 7 and + 12. The resultant luminosityfunction is consistent with the Luyten and Wielen functions for thesolar neighbourhood. An analysis of the stellar kinematics shows littlesignificant evidence of a substantial local population of low spacemotion M-dwarfs.

Photometry of Southern Hemisphere red dwarf stars
Results are presented for a photometric investigation of aspectroscopically selected sample of red dwarf stars in the SouthernHemisphere. Absolute magnitudes and distances for the stars areestimated from broadband red colors. Three stars which may besubluminous are identified, as are several stars which may be within 25pc. The tangential velocity and velocity dispersion of the sample aresimilar to values found in other studies of nearby late-type stars.

The space density and kinematics of dwarf M stars
The results of an objective-prism survey for dwarf stars, K7 and later,are presented. One hundred twenty-one red sensitive plates covering 1720sq. degrees of the southern sky were obtained with the Curtis Schmidttelescope at C.T.I.O. The resulting luminosity function rises from log N+ 10 = 7.9 at MV = 8 to about 8.7 at MV = 11 and12. About 75% of the dwarfs in this survey are identified with BPMstars, but inserting the proper motions given into the equations of themethod of mean absolute magnitudes yields values of MB aboutthree magnitudes brighter than the spectral types would indicate. Thatthe method of mean absolute magnitudes appears to be calibrated on starsof higher than average proper motion lends credence to the luminosityfunction result. A galactic mass density is found for the dwarfsconsidered.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Indien
Right ascension:21h59m53.83s
Declination:-62°06'16.1"
Apparent magnitude:12.295
Distance:42.535 parsecs
Proper motion RA:92
Proper motion Dec:-8.6
B-T magnitude:14.235
V-T magnitude:12.456

Catalogs and designations:
Proper Names
TYCHO-2 2000TYC 9116-260-1
USNO-A2.0USNO-A2 0225-31364110
HIPHIP 108594

→ Request more catalogs and designations from VizieR