Home     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Astro Photo     The Collection     Forum     Blog New!     FAQ     Login  
→ Adopt this star  

HD 110833


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

The eccentricity-mass distribution of exoplanets: signatures of different formation mechanisms?
We examine the distributions of eccentricity and host star metallicityof exoplanets as a function of their mass. Planets with M sin i ⪆ 4MJ have an eccentricity distribution consistent with that ofbinary stars, while planets with M sin i ⪉ 4 MJ are lesseccentric than binary stars and more massive planets. In addition, hoststar metallicities decrease with planet mass. The statisticalsignificance of both of these trends is only marginal with the presentsample of exoplanets. To account for these trends, we hypothesize thatthere are two populations of gaseous planets: the low-mass populationforms by gas accretion onto a rock-ice core in a circumstellar disk andis more abundant at high metallicities, and the high-mass populationforms directly by fragmentation of a pre-stellar cloud. Planets of thefirst population form in initially circular orbits and grow theireccentricities later, and may have a mass upper limit from the totalmass of the disk that can be accreted by the core. The second populationmay have a mass lower limit resulting from opacity-limitedfragmentation. This would roughly divide the two populations in mass,although they would likely overlap over some mass range. If most objectsin the second population form before the pre-stellar cloud becomeshighly opaque, they would have to be initially located in orbits largerthan ~30 AU, and would need to migrate to the much smaller orbits inwhich they are observed. The higher mean orbital eccentricity of thesecond population might be caused by the larger required intervals ofradial migration, and the brown dwarf desert might be due to theinability of high-mass brown dwarfs to migrate inwards sufficiently inradius.

Dwarfs in the Local Region
We present lithium, carbon, and oxygen abundance data for a sample ofnearby dwarfs-a total of 216 stars-including samples within 15 pc of theSun, as well as a sample of local close giant planet (CGP) hosts (55stars) and comparison stars. The spectroscopic data for this work have aresolution of R~60,000, a signal-to-noise ratio >150, and spectralcoverage from 475 to 685 nm. We have redetermined parameters and derivedadditional abundances (Z>10) for the CGP host and comparison samples.From our abundances for elements with Z>6 we determine the meanabundance of all elements in the CGP hosts to range from 0.1 to 0.2 dexhigher than nonhosts. However, when relative abundances ([x/Fe]) areconsidered we detect no differences in the samples. We find nodifference in the lithium contents of the hosts versus the nonhosts. Theplanet hosts appear to be the metal-rich extension of local regionabundances, and overall trends in the abundances are dominated byGalactic chemical evolution. A consideration of the kinematics of thesample shows that the planet hosts are spread through velocity space;they are not exclusively stars of the thin disk.

The CORALIE survey for southern extra-solar planets. XIII. A pair of planets around HD 202206 or a circumbinary planet?
Long-term precise Doppler measurements with the CORALIE spectrographreveal the presence of a second planet orbiting the solar-type star HD202206. The radial-velocity combined fit yields companion masses ofm2sin i=17.4 MJup and 2.44 MJup,semi-major axes of a=0.83 AU and 2.55 AU, and eccentricities of e=0.43and 0.27, respectively. A dynamical analysis of the system further showsa 5/1 mean motion resonance between the two planets. This system is ofparticular interest since the inner planet is within the brown-dwarflimits while the outer one is much less massive. Therefore, either theinner planet formed simultaneously in the protoplanetary disk as asuperplanet, or the outer Jupiter-like planet formed in a circumbinarydisk. We believe this singular planetary system will provide importantconstraints on planetary formation and migration scenarios.

Abundance trends in kinematical groups of the Milky Way's disk
We have compiled a large catalogue of metallicities and abundance ratiosfrom the literature in order to investigate abundance trends of severalalpha and iron peak elements in the thin disk and the thick disk of theGalaxy. The catalogue includes 743 stars with abundances of Fe, O, Mg,Ca, Ti, Si, Na, Ni and Al in the metallicity range -1.30 < [Fe/H]< +0.50. We have checked that systematic differences betweenabundances measured in the different studies were lower than randomerrors before combining them. Accurate distances and proper motions fromHipparcos and radial velocities from several sources have been retreivedfor 639 stars and their velocities (U, V, W) and galactic orbits havebeen computed. Ages of 322 stars have been estimated with a Bayesianmethod of isochrone fitting. Two samples kinematically representative ofthe thin and thick disks have been selected, taking into account theHercules stream which is intermediate in kinematics, but with a probabledynamical origin. Our results show that the two disks are chemicallywell separated, they overlap greatly in metallicity and both showparallel decreasing alpha elements with increasing metallicity, in theinterval -0.80 < [Fe/H] < -0.30. The Mg enhancement with respectto Fe of the thick disk is measured to be 0.14 dex. An even largerenhancement is observed for Al. The thick disk is clearly older than thethin disk with tentative evidence of an AMR over 2-3 Gyr and a hiatus instar formation before the formation of the thin disk. We do not observea vertical gradient in the metallicity of the thick disk. The Herculesstream has properties similar to that of the thin disk, with a widerrange of metallicity. Metal-rich stars assigned to the thick disk andsuper-metal-rich stars assigned to the thin disk appear as outliers inall their properties.

A new Böhm-Vitense gap in the temperature range 5560 to 5610 K in the main sequence hm-Vitense gap in the main sequence
Highly precise temperatures (σ = 10-15 K) have been determinedfrom line depth ratios for a set of 248 F-K field dwarfs of about solarmetallicity (-0.5 < [Fe/H] < +0.4), based on high resolution (R=42000), high S/N echelle spectra. A new gap has been discovered in thedistribution of stars on the Main Sequence in the temperature range 5560to 5610 K. This gap coincides with a jump in the microturbulent velocityVt and the well-known Li depression near 5600 K in fielddwarfs and open clusters. As the principal cause of the observeddiscontinuities in stellar properties we propose the penetration of theconvective zone into the inner layers of stars slightly less massivethan the Sun and related to it, a change in the temperature gradient.Based on spectra collected with the ELODIE spectrograph at the 1.93-mtelescope of the Observatoire de Haute-Provence (France).Full Table 1 is only available in electronic form athttp://www.edpsciences.org

Chemical enrichment and star formation in the Milky Way disk. III. Chemodynamical constraints
In this paper, we investigate some chemokinematical properties of theMilky Way disk, by using a sample composed by 424 late-type dwarfs. Weshow that the velocity dispersion of a stellar group correlates with theage of this group, according to a law proportional to t0.26,where t is the age of the stellar group. The temporal evolution of thevertex deviation is considered in detail. It is shown that the vertexdeviation does not seem to depend strongly on the age of the stellargroup. Previous studies in the literature seem to not have found it dueto the use of statistical ages for stellar groups, rather thanindividual ages. The possibility to use the orbital parameters of a starto derive information about its birthplace is investigated, and we showthat the mean galactocentric radius is likely to be the most reliablestellar birthplace indicator. However, this information cannot bepresently used to derive radial evolutionary constraints, due to anintrinsic bias present in all samples constructed from nearby stars. Anextensive discussion of the secular and stochastic heating mechanismscommonly invoked to explain the age-velocity dispersion relation ispresented. We suggest that the age-velocity dispersion relation couldreflect the gradual decrease in the turbulent velocity dispersion fromwhich disk stars form, a suggestion originally made by Tinsley &Larson (\cite{tinsley}, ApJ, 221, 554) and supported by several morerecent disk evolution calculations. A test to distinguish between thetwo types of models using high-redshift galaxies is proposed.Full Table 1 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/423/517

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

On the correlation of elemental abundances with kinematics among galactic disk stars
We have performed the detailed analysis of 174 high-resolution spectraof FGK dwarfs obtained with the ELODIE echelle spectrograph at theObservatoire de Haute-Provence. Abundances of Fe, Si and Ni have beendetermined from equivalent widths under LTE approximation, whereasabundances of Mg have been determined under NLTE approximation usingequivalent widths of 4 lines and profiles of 5 lines. Spatial velocitieswith an accuracy better than 1 km s-1, as well as orbits,have been computed for all stars. They have been used to define 2subsamples kinematically representative of the thin disk and the thickdisk in order to highlight their respective properties. A transitionoccurs at [Fe/H] =-0.3. Stars more metal-rich than this value have aflat distribution with Zmax;<1 kpc and σW<20 km s-1, and a narrow distribution of [α/Fe].There exist stars in this metallicity regime which cannot belong to thethin disk because of their excentric orbits, neither to the thick diskbecause of their low scale height. Several thin disk stars areidentified down to [Fe/H] =-0.80. Their Mg enrichment is lower thanthick disk stars with the same metallicity. We confirm from a largersample the results of Feltzing et al. (\cite{felt03}) and Bensby et al.(\cite{ben03}) showing a decrease of [α/Fe] with [Fe/H] in thethick disk interpreted as the signature of the SNIa which haveprogressively enriched the ISM with iron. However our data suggest thatthe star formation in the thick disk stopped when the enrichment was[Fe/H] =-0.30, [Mg/Fe] =+0.20, [Si/Fe] =+0.17. A vertical gradient in[α/Fe] may exist in the thick disk but should be confirmed with alarger sample. Finally we have identified 2 new candidates of the HR1614moving group.Based on spectra collected with the ELODIE spectrograph at the 1.93-mtelescope of the Observatoire de Haute Provence (France).Tables 3 and 8 are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/551

Abundance Analysis of Planetary Host Stars. I. Differential Iron Abundances
We present atmospheric parameters and iron abundances derived fromhigh-resolution spectra for three samples of dwarf stars: stars that areknown to host close-in giant planets (CGP), stars for which radialvelocity data exclude the presence of a close-in giant planetarycompanion (no-CGP), as well as a random sample of dwarfs with a spectraltype and magnitude distribution similar to that of the planetary hoststars (control). All stars have been observed with the same instrumentand have been analyzed using the same model atmospheres, atomic data,and equivalent width modeling program. Abundances have been deriveddifferentially to the Sun, using a solar spectrum obtained with Callistoas the reflector with the same instrumentation. We find that the ironabundances of CGP dwarfs are on average 0.22 dex greater than that ofno-CGP dwarfs. The iron abundance distributions of both the CGP andno-CGP dwarfs are different than that of the control dwarfs, while thecombined iron abundances have a distribution that is very similar tothat of the control dwarfs. All four samples (CGP, no-CGP, combined, andcontrol) have different effective temperature distributions. We showthat metal enrichment occurs only for CGP dwarfs with temperatures justbelow solar and ~300 K higher than solar, whereas the abundancedifference is insignificant at Teff around 6000 K.

Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog
We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.

Multiplicity among solar-type stars. III. Statistical properties of the F7-K binaries with periods up to 10 years
Two CORAVEL radial velocity surveys - one among stars in the solarneighbourhood, the other in the Pleiades and in Praesepe - are merged toderive the statistical properties of main-sequence binaries withspectral types F7 to K and with periods up to 10 years. A sample of 89spectroscopic orbits was finally obtained. Among them, 52 relate to afree-of-bias selection of 405 stars (240 field stars and 165 clusterstars). The statistics corrected for selection effects yield thefollowing results: (1) No discrepancy is found between the binariesamong field stars and the binaries in open cluster. The distributions ofmass ratios, of periods, the period-eccentricity diagram and the binaryfrequencies are all within the same error intervals. (2) Thedistribution of mass ratios presents two maxima: a broad peak from q ~0.2 to q ~ 0.7, and a sharp peak for q > 0.8 (twins). Both arepresent among the early-type as well as among the late-type part of thesample, indicating a scale-free formation process. The peak for q >0.8 gradually decreases when long-period binaries are considered.Whatever their periods, the twins have eccentricities significantlylower than the other binaries, confirming a difference in the formationprocesses. Twins could be generated by in situ formation followed byaccretion from a gaseous envelope, whereas binaries with intermediatemass ratios could be formed at wide separations, but they are madecloser by migration led by interactions with a circumbinary disk. (3)The frequency of binaries with P<10 years is about 14%. (4) About0.3% of binaries are expected to appear as false positives in a planetsearch. Therefore, the frequency of planetary systems among stars ispresently 7+4-2%. The extension of thedistribution of mass ratios in the planetary range would result in avery sharp and very high peak, well separated from the binary stars withlow mass ratios. Based on photoelectric radial-velocity measurementscollected at Haute-Provence observatory and on observations made withthe ESA Hipparcos astrometry satellite.

HIPPARCOS age-metallicity relation of the solar neighbourhood disc stars
We derive age-metallicity relations (AMRs) and orbital parameters forthe 1658 solar neighbourhood stars to which accurate distances aremeasured by the HIPPARCOS satellite. The sample stars comprise 1382 thindisc stars, 229 thick disc stars, and 47 halo stars according to theirorbital parameters. We find a considerable scatter for thin disc AMRalong the one-zone Galactic chemical evolution (GCE) model. Orbits andmetallicities of thin disc stars show now clear relation each other. Thescatter along the AMR exists even if the stars with the same orbits areselected. We examine simple extension of one-zone GCE models whichaccount for inhomogeneity in the effective yield and inhomogeneous starformation rate in the Galaxy. Both extensions of the one-zone GCE modelcannot account for the scatter in age - [Fe/H] - [Ca/Fe] relationsimultaneously. We conclude, therefore, that the scatter along the thindisc AMR is an essential feature in the formation and evolution of theGalaxy. The AMR for thick disc stars shows that the star formationterminated 8 Gyr ago in the thick disc. As already reported by Grattonet al. (\cite{Gratton_et.al.2000}) and Prochaska et al.(\cite{Prochaska_et.al.2000}), thick disc stars are more Ca-rich thanthin disc stars with the same [Fe/H]. We find that thick disc stars showa vertical abundance gradient. These three facts, the AMR, verticalgradient, and [Ca/Fe]-[Fe/H] relation, support monolithic collapseand/or accretion of satellite dwarf galaxies as likely thick discformation scenarios. Tables 2 and 3 are only available in electronicform at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)or via http:/ /cdsweb.u-strasbg.fr/ cgi-bin/qcat?J/ A+A/394/927

The CORALIE survey for southern extra-solar planets. VIII. The very low-mass companions of HD 141937, HD 162020, HD 168443 and HD 202206: Brown dwarfs or ``superplanets''?
Doppler CORALIE measurements of the solar-type stars HD141937, HD 162020, HD168443 and HD 202206 show Keplerianradial-velocity variations revealing the presence of 4 new companionswith minimum masses close to the planet/brown-dwarf transition, namelywith m2sin i= 9.7, 14.4, 16.9, and 17.5 MJup,respectively. The orbits present fairly large eccentricities (0.22<=e <= 0.43). Except for HD 162020, the parent starsare metal rich compared to the Sun, as are most of the detectedextra-solar planet hosts. Considerations of tidal dissipation in theshort-period HD 162020 system points towards abrown-dwarf nature for the low-mass companion. HD168443 is a multiple system with two low-mass companions beingeither brown dwarfs or formed simultaneously in the protoplanetary disksas superplanets. For HD 202206, the radial velocitiesshow an additional drift revealing a further outer companion, the natureof which is still unknown. Finally, the stellar-host and orbitalproperties of massive planets are examined in comparison to lighterexoplanets. Observed trends include the need of metal-rich stars to formmassive exoplanets and the lack of short periods for massive planets. Ifconfirmed with improved statistics, these features may provideconstraints for the migration scenario. Based on observations collectedwith the CORALIE echelle spectrograph on the 1.2-m Euler Swiss telescopeat La Silla Observatory, ESO Chile.

A 25 micron search for Vega-like disks around main-sequence stars with ISO
We present an ISO 25 mu m photometric survey of a sample of 81 nearbymain-sequence stars in order to determine the incidence of ``warm'' dustdisks. All stars were detected by ISO. We used an empirical relation toestimate the photospheric flux of the stars at 25 mu m. We find 5 stars(6%) with excess above the photospheric flux which we attribute to aVega-like disk. These stars show disk temperatures not warmer than 120K. Our study indicates that warm disks are relatively rare. Not a singlestar in our sample older than 400 Myr has a warm disk. We find an upperlimit of Mdisk = 2x 10-5 Moplus forthe mass of the disks which we did not detect. ISO is an ESA projectwith instruments funded by ESA Member States (especially the PIcountries: France, Germany, The Netherlands and the United Kingdom) andwith the participation of ISAS and NASA.

Planet Host Stars: Mass, Age and Kinematics
We determine the mass, age and kinematics of 51 extra-solar planet hoststars. The results are then used to search for signs of connection ofthe data with metallicity and to investigate the population nature. Wefind that the increase in mean metallicity with stellar mass is similarto that in normal field stars, so it seems unsuitable to use thisrelation as a constraint on the theory of planet formation. The age andkinematic distributions seem to favour the metallicity of extra-solarplanet host stars being initial. Although the kinematic data of thesestars indicate their origin from two populations -- the thin and thethick disks, kinematics may not help in the maintenance of the planetaround the host. Stars with planets, brown dwarfs or stellar companionsare sorted into three groups and re-investigated separately for theirformation mechanism. The main results indicate that stars withM2 < 25 MJ have [Fe/H] > -0.1 and a wideperiod range, but there are no other differences. Thus, there does notseem to be any physically distinguishable characteristics among thethree star groups.

Infrared Detection of Low-Mass Secondaries in Spectroscopic Binaries
This paper outlines an infrared spectroscopic technique to measure theradial velocities of faint secondaries in known single-lined binaries.The paper presents our H-band observations with the Cryogenic Echelle(CSHELL) and the Phoenix spectrographs and describes detections of threelow-mass secondaries in main-sequence binaries, G147-36, G164-67, and HD144284, with mass ratios of 0.562+/-0.011, 0.423+/-0.042, and0.380+/-0.013, respectively. The latter is one of the smallest massratios derived to date for detached main-sequence stars.

Late-type members of young stellar kinematic groups - I. Single stars
This is the first paper of a series aimed at studying the properties oflate-type members of young stellar kinematic groups. We concentrate ourstudy on classical young moving groups such as the Local Association(Pleiades moving group, 20-150Myr), IC 2391 supercluster (35Myr), UrsaMajor group (Sirius supercluster, 300Myr), and Hyades supercluster(600Myr), as well as on recently identified groups such as the Castormoving group (200Myr). In this paper we compile a preliminary list ofsingle late-type possible members of some of these young stellarkinematic groups. Stars are selected from previously established membersof stellar kinematic groups based on photometric and kinematicproperties as well as from candidates based on other criteria such astheir level of chromospheric activity, rotation rate and lithiumabundance. Precise measurements of proper motions and parallaxes takenfrom the Hipparcos Catalogue, as well as from the Tycho-2 Catalogue, andpublished radial velocity measurements are used to calculate theGalactic space motions (U, V, W) and to apply Eggen's kinematic criteriain order to determine the membership of the selected stars to thedifferent groups. Additional criteria using age-dating methods forlate-type stars will be applied in forthcoming papers of this series. Afurther study of the list of stars compiled here could lead to a betterunderstanding of the chromospheric activity and their age evolution, aswell as of the star formation history in the solar neighbourhood. Inaddition, these stars are also potential search targets for directimaging detection of substellar companions.

Analysis of the Hipparcos Observations of the Extrasolar Planets and the Brown Dwarf Candidates
We analyzed the Hipparcos astrometric observations of 47 stars that werediscovered to harbor giant planets and 14 stars with brown dwarfsecondary candidates. The Hipparcos measurements were used together withthe corresponding stellar radial velocity data to derive an astrometricorbit for each system. To find out the significance of the derivedastrometric orbits, we applied a ``permutation'' technique by which weanalyzed the permuted Hipparcos data to get false orbits. The sizedistribution of these false orbits indicated the range of possiblyrandom, false orbits that could be derived from the true data. Thesetests could not find any astrometric orbit of the planet candidates withsignificance higher than 99%, suggesting that most if not all orbits arenot real. Instead, we used the Hipparcos data to set upper limits on themasses of the planet candidates. The lowest derived upper limit is thatof 47 UMa-0.014 Msolar, which confirms the planetary natureof its unseen companion. For 13 other planet candidates, the upperlimits exclude the stellar nature of their companions, although browndwarf secondaries are still an option. These negate the idea that all ormost of the extrasolar planets are disguised stellar secondaries. Of the14 brown dwarf candidates, our analysis reproduced the results ofHalbwachs et al., who derived significant astrometric orbits for sixsystems that imply secondaries with stellar masses. We show that anotherstar, HD 164427, which was discovered only very recently, also has asecondary with stellar mass. Our findings support Halbwachs et al.'sconclusion about the possible existence of the ``brown dwarf desert''that separates the planets and the stellar secondaries.

The companion of HD 190228: Planet or brown dwarf?
A detailed abundance analysis has been carried out from high-resolution,high signal-to-noise spectra of the G5IV star HD190228, which is announced to harbor an extrasolar planet withMPsin i of 5.0 MJ and an orbital period of 1127days. Based on the model atmosphere of Teff=5180 K, {log g}=3.7, xit =1.3 km s-1, we obtained [Fe/H]=-0.40,which puts it on the metal-poor tail of the metallicity distribution ofthe so far discovered 48 planet-harboring stars. The relative abundance,[X/Fe], indicates an overabundance of light elements (O, Na, Mg, Al, Si,S, Sc) by 0.1-0.2 dex and the solar abundance of heavier elements (K,Ca, Ti, V, Cr, Mn, Ni, Ba). These elements show no conspicuousanomalies. The solar [C/Fe] seems to be slightly smaller than theaverage (but within the scatter) of field stars of the same [Fe/H], andthere is no clear trend of [X/H] with condensation temperature of theelement. Neither the process of planet formation nor the stellardilution during the subgiant stage seems to have polluted its chemicalcomposition. The initially low metallicity may be explained by thesuggestion that HD 190228 is accompanied by a browndwarf instead of a planet. Based on observation carried out at BeijingAstronomical Observatory (Xinglong, PR China).

A Spectrophotometric Technique for Detecting Companions of Low-Mass M Dwarfs
The most common stars in the Galaxy are the main-sequence M dwarfs, yetcurrent techniques are not optimized for detecting companions around thelowest mass M dwarfs, those with spectral designations ranging from M6to M10. Described in this paper is a search for companions around suchstars using a newly designed differential spectrophotometric technique.This novel method combines the strengths of the photometric andspectroscopic techniques, while it minimizes their inherent limitations.The scientific goal of this project is to search for short-periodsystems containing brown dwarfs and giant planets. The detection of orplacing limits on such systems will help discriminate among competingtheories of planetary formation.

Catalogue of Apparent Diameters and Absolute Radii of Stars (CADARS) - Third edition - Comments and statistics
The Catalogue, available at the Centre de Données Stellaires deStrasbourg, consists of 13 573 records concerning the results obtainedfrom different methods for 7778 stars, reported in the literature. Thefollowing data are listed for each star: identifications, apparentmagnitude, spectral type, apparent diameter in arcsec, absolute radiusin solar units, method of determination, reference, remarks. Commentsand statistics obtained from CADARS are given. The Catalogue isavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcar?J/A+A/367/521

Incidence and survival of remnant disks around main-sequence stars
We present photometric ISO 60 and 170 μm measurements, complementedby some IRAS data at 60 μm, of a sample of 84 nearby main-sequencestars of spectral class A, F, G and K in order to determine theincidence of dust disks around such main-sequence stars. Fifty starswere detected at 60 μm. 36 of these emit a flux expected from theirphotosphere while 14 emit significantly more. The excess emission weattribute to a circumstellar disk like the ones around Vega and betaPictoris. Thirty four stars were not detected at all; the expectedphotospheric flux, however, is so close to the detection limit that thestars cannot have an excess stronger than the photospheric flux densityat 60 μm. Of the stars younger than 400 Myr one in two has a disk;for the older stars this is true for only one in ten. We conclude thatmost stars arrive on the main sequence surrounded by a disk; this diskthen decays in about 400 Myr. Because (i) the dust particles disappearand must be replenished on a much shorter time scale and (ii) thecollision of planetesimals is a good source of new dust, we suggest thatthe rapid decay of the disks is caused by the destruction and escape ofplanetesimals. We suggest that the dissipation of the disk is related tothe heavy bombardment phase in our Solar System. Whether all starsarrive on the main sequence surrounded by a disk cannot be established:some very young stars do not have a disk. And not all stars destroytheir disk in a similar way: some stars as old as the Sun still havesignificant disks. Based on observations with ISO, an ESA project withinstruments funded by ESA Member States (especially the PI countries:France, Germany, The Netherlands and the UK) and with the participationof ISAS and NASA. Tables 2, 3 and 4 are also available in electronicform at the CDS via anonymous ftp cdsarc.u-strasbg.fr (130.79.128.5)} orvia http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/365/545

Planets without stars : the probable abundance, nature, and significance of ISPs.
Not Available

The Vienna-KPNO search for Doppler-imaging candidate stars. I. A catalog of stellar-activity indicators for 1058 late-type Hipparcos stars
We present the results from a spectroscopic Ca ii H&K survey of 1058late-type stars selected from a color-limited subsample of the Hipparcoscatalog. Out of these 1058 stars, 371 stars were found to showsignificant H&K emission, most of them previously unknown; 23% withstrong emission, 36% with moderate emission, and 41% with weak emission.These spectra are used to determine absolute H&K emission-linefluxes, radial velocities, and equivalent widths of theluminosity-sensitive Sr ii line at 4077 Ä. Red-wavelengthspectroscopic and Strömgren y photometric follow-up observations ofthe 371 stars with H&K emission are used to additionally determinethe absolute Hα -core flux, the lithium abundance from the Li i6708 Å equivalent width, the rotational velocity vsin i, theradial velocity, and the light variations and its periodicity. Thelatter is interpreted as the stellar rotation period due to aninhomogeneous surface brightness distribution. 156 stars were found withphotometric periods between 0.29 and 64 days, 11 additional systemsshowed quasi-periodic variations possibly in excess of ~50 days. Further54 stars had variations but no unique period was found, and four starswere essentially constant. Altogether, 170 new variable stars werediscovered. Additionally, we found 17 new SB1 (plus 16 new candidates)and 19 new SB2 systems, as well as one definite and two possible new SB3systems. Finally, we present a list of 21 stars that we think are mostsuitable candidates for a detailed study with the Doppler-imagingtechnique. Tables A1--A3 are only available in electronic form at theCDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Exploring the brown dwarf desert with Hipparcos
The orbital elements of 11 spectroscopic binaries with brown dwarfcandidates (M2 sin i between 0.01 and 0.08 Msun)are combined with the Hipparcos observations in order to deriveastrometric orbits. Estimations of the masses of the secondarycomponents are thus calculated. It appears that 5 secondary masses aremore than 2 sigmaM2 above the limit of 0.08Msun, and are therefore not brown dwarfs. 2 other stars arestill discarded at the 1 sigmaM2 level, 1 browndwarf is accepted with a low confidence, and we are finally left with 3viable candidates which must be studied by other means. A statisticalapproach is developed, based on the relation between the semi-major axesof the photocentric orbit, a_0, their errors, sigma a_0, andthe frequency distribution of the mass ratios, q. It is investigatedwhether the set of values of a_0 and sigma a_0 obtained forthe sample is compatible with different frequency distributions of q. Itis concluded that a minimum actually exists for M2 betweenabout 0.01 and 0.1 Msun for companions of solar-type stars.This feature could correspond to the transition between giant planetsand stellar companions. Due to the relatively large frequency of singlebrown dwarfs found recently in open clusters, it is concluded that thedistribution of the masses of the secondary components in binary systemsdoes not correspond to the IMF, at least for masses below thehydrogen-ignition limit. Based on photoelectric radial-velocitymeasurements collected at Haute-Provence observatory and on observationsmade with the ESA Hipparcos astrometry satellite.

On the Nature of Low-Mass Companions to Solar-like Stars
Low-mass companions (mass <70 Jupiter masses) to solar-like stars arecompared statistically to stellar-mass secondaries in binaries ofsimilar primary spectral types and orbital scales, based largely on thesurvey of Duquennoy & Mayor. To within the limits imposed byobservational constraints, the orbital properties of these low-masscompanions (LMCs) are statistically indistinguishable from those ofbinary systems. In both populations, orbital periods (P), semimajor axes(a), angular momenta (L), and binding energies (U) are all distributedapproximately as f(x)~x-1 for x=P,a,L,U. In both populations,eccentricities are broadly distributed approximately asf(e)~e-0.5, with no significant correlation with otherorbital elements, apart from a marked circularization of close orbits.The distribution of LMC masses is approximately a power law with indexbetween -1 and -2 there is ambiguous evidence in the data for a massspectrum bimodality about approximately 10 Jupiter masses. In bothpopulations the joint distributions of mass with all orbital propertiesare largely scattergrams, with no statistically significantcorrelations. The overall statistical properties of LMCs are suggestiveof a common formation mechanism with binary star systems. The similarform of the distributions of all orbital dynamic quantities in bothpopulations may result from postformation dissipative orbital decay.

Photometric Measurements of the Fields of More than 700 Nearby Stars
In preparation for optical/IR interferometric searches for substellarcompanions of nearby stars, we undertook to characterize the fields ofall nearby stars visible from the Northern Hemisphere to determinesuitable companions for interferometric phase referencing. Because theKeck Interferometer in particular will be able to phase-reference oncompanions within the isoplanatic patch (30") to about 17th magnitude atK, we took images at V, r, and i that were deep enough to determine iffield stars were present to this magnitude around nearby stars using aspot-coated CCD. We report on 733 fields containing 10,629 measurementsin up to three filters (Gunn i, r and Johnson V) of nearby stars down toabout 13th magnitude at V.

The ROSAT all-sky survey catalogue of the nearby stars
We present X-ray data for all entries of the Third Catalogue of NearbyStars \cite[(Gliese & Jahreiss 1991)]{gli91} that have been detectedas X-ray sources in the ROSAT all-sky survey. The catalogue contains1252 entries yielding an average detection rate of 32.9 percent. Inaddition to count rates, source detection parameters, hardness ratios,and X-ray fluxes we also list X-ray luminosities derived from Hipparcosparallaxes. Catalogue also available at CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

The mass distribution of extrasolar planet candidates and low-mass secondaries.
Not Available

Habitable Moons
Not Available

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Chiens de chasse
Right ascension:12h44m14.54s
Declination:+51°45'33.5"
Apparent magnitude:7.018
Distance:15.06 parsecs
Proper motion RA:-389.8
Proper motion Dec:-176.9
B-T magnitude:8.222
V-T magnitude:7.118

Catalogs and designations:
Proper Names
HD 1989HD 110833
TYCHO-2 2000TYC 3458-2234-1
USNO-A2.0USNO-A2 1350-08158198
HIPHIP 62145

→ Request more catalogs and designations from VizieR