Főoldal     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Asztrofotók     Kollekció     Fórum     Blog New!     GYIK     Bejelentkezés  
→ Adopt this star  

HD 192343


Tartalom

Képek

Kép feltöltése

DSS Images   Other Images


Kapcsolódó cikkek

Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs
We present a uniform catalog of stellar properties for 1040 nearby F, G,and K stars that have been observed by the Keck, Lick, and AAT planetsearch programs. Fitting observed echelle spectra with synthetic spectrayielded effective temperature, surface gravity, metallicity, projectedrotational velocity, and abundances of the elements Na, Si, Ti, Fe, andNi, for every star in the catalog. Combining V-band photometry andHipparcos parallaxes with a bolometric correction based on thespectroscopic results yielded stellar luminosity, radius, and mass.Interpolating Yonsei-Yale isochrones to the luminosity, effectivetemperature, metallicity, and α-element enhancement of each staryielded a theoretical mass, radius, gravity, and age range for moststars in the catalog. Automated tools provide uniform results and makeanalysis of such a large sample practical. Our analysis method differsfrom traditional abundance analyses in that we fit the observed spectrumdirectly, rather than trying to match equivalent widths, and wedetermine effective temperature and surface gravity from the spectrumitself, rather than adopting values based on measured photometry orparallax. As part of our analysis, we determined a new relationshipbetween macroturbulence and effective temperature on the main sequence.Detailed error analysis revealed small systematic offsets with respectto the Sun and spurious abundance trends as a function of effectivetemperature that would be inobvious in smaller samples. We attempted toremove these errors by applying empirical corrections, achieving aprecision per spectrum of 44 K in effective temperature, 0.03 dex inmetallicity, 0.06 dex in the logarithm of gravity, and 0.5 kms-1 in projected rotational velocity. Comparisons withprevious studies show only small discrepancies. Our spectroscopicallydetermined masses have a median fractional precision of 15%, but theyare systematically 10% higher than masses obtained by interpolatingisochrones. Our spectroscopic radii have a median fractional precisionof 3%. Our ages from isochrones have a precision that variesdramatically with location in the Hertzsprung-Russell diagram. We planto extend the catalog by applying our automated analysis technique toother large stellar samples.

The Planet-Metallicity Correlation
We have recently carried out spectral synthesis modeling to determineTeff, logg, vsini, and [Fe/H] for 1040 FGK-type stars on theKeck, Lick, and Anglo-Australian Telescope planet search programs. Thisis the first time that a single, uniform spectroscopic analysis has beenmade for every star on a large Doppler planet search survey. We identifya subset of 850 stars that have Doppler observations sufficient todetect uniformly all planets with radial velocity semiamplitudes K>30m s-1 and orbital periods shorter than 4 yr. From this subsetof stars, we determine that fewer than 3% of stars with-0.5<[Fe/H]<0.0 have Doppler-detected planets. Above solarmetallicity, there is a smooth and rapid rise in the fraction of starswith planets. At [Fe/H]>+0.3 dex, 25% of observed stars have detectedgas giant planets. A power-law fit to these data relates the formationprobability for gas giant planets to the square of the number of metalatoms. High stellar metallicity also appears to be correlated with thepresence of multiple-planet systems and with the total detected planetmass. This data set was examined to better understand the origin of highmetallicity in stars with planets. None of the expected fossilsignatures of accretion are observed in stars with planets relative tothe general sample: (1) metallicity does not appear to increase as themass of the convective envelopes decreases, (2) subgiants with planetsdo not show dilution of metallicity, (3) no abundance variations for Na,Si, Ti, or Ni are found as a function of condensation temperature, and(4) no correlations between metallicity and orbital period oreccentricity could be identified. We conclude that stars with extrasolarplanets do not have an accretion signature that distinguishes them fromother stars; more likely, they are simply born in higher metallicitymolecular clouds.Based on observations obtained at Lick and Keck Observatories, operatedby the University of California, and the Anglo-Australian Observatories.

Chromospheric Ca II Emission in Nearby F, G, K, and M Stars
We present chromospheric Ca II H and K activity measurements, rotationperiods, and ages for ~1200 F, G, K, and M type main-sequence stars from~18,000 archival spectra taken at Keck and Lick Observatories as a partof the California and Carnegie Planet Search Project. We have calibratedour chromospheric S-values against the Mount Wilson chromosphericactivity data. From these measurements we have calculated medianactivity levels and derived R'HK, stellar ages,and rotation periods from general parameterizations for 1228 stars,~1000 of which have no previously published S-values. We also presentprecise time series of activity measurements for these stars.Based on observations obtained at Lick Observatory, which is operated bythe University of California, and on observations obtained at the W. M.Keck Observatory, which is operated jointly by the University ofCalifornia and the California Institute of Technology. The KeckObservatory was made possible by the generous financial support of theW. M. Keck Foundation.

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Radial Velocities for 889 Late-Type Stars
We report radial velocities for 844 FGKM-type main-sequence and subgiantstars and 45 K giants, most of which had either low-precision velocitymeasurements or none at all. These velocities differ from the standardstars of Udry et al. by 0.035 km s-1 (rms) for the 26 FGKstandard stars in common. The zero point of our velocities differs fromthat of Udry et al.: =+0.053km s-1. Thus, these new velocities agree with the best knownstandard stars both in precision and zero point, to well within 0.1 kms-1. Nonetheless, both these velocities and the standardssuffer from three sources of systematic error, namely, convectiveblueshift, gravitational redshift, and spectral type mismatch of thereference spectrum. These systematic errors are here forced to be zerofor G2 V stars by using the Sun as reference, with Vesta and day sky asproxies. But for spectral types departing from solar, the systematicerrors reach 0.3 km s-1 in the F and K stars and 0.4 kms-1 in M dwarfs. Multiple spectra were obtained for all 889stars during 4 years, and 782 of them exhibit velocity scatter less than0.1 km s-1. These stars may serve as radial velocitystandards if they remain constant in velocity. We found 11 newspectroscopic binaries and report orbital parameters for them. Based onobservations obtained at the W. M. Keck Observatory, which is operatedjointly by the University of California and the California Institute ofTechnology, and on observations obtained at the Lick Observatory, whichis operated by the University of California.

Mining the Metal-rich Stars for Planets
We examine the correlation between stellar metallicity and the presenceof short-period planets. It appears that approximately 1% of dwarf starsin the solar neighborhood harbor short-period planets characterized bynear-circular orbits and orbital periods P<20 days. However, amongthe most metal-rich stars (defined as having [Fe/H]>0.2 dex), itappears that the fraction increases to 10%. Using the Hipparcos databaseand the Hauck & Mermilliod compilation of Strömgren uvbyphotometry, we identify a sample of 206 metal-rich stars of spectraltype K, G and F which have an enhanced probability of harboringshort-period planets. Many of these stars would be excellent candidatesfor addition to radial velocity surveys. We have searched the Hipparcosepoch photometry for transiting planets within our 206 star catalog. Wefind that the quality of the Hipparcos data is not high enough to permitunambiguous transit detections. It is, however, possible to identifycandidate transit periods. We then discuss various ramifications of thestellar metallicity-planet connection. First, we show that there ispreliminary evidence for increasing metallicity with increasing stellarmass among known planet-bearing stars. This trend can be explained by ascenario in which planet-bearing stars accrete an average of 30M⊕ of rocky material after the gaseous protoplanetarydisk phase has ended. We present dynamical calculations which suggestthat a survey of metallicities of spectroscopic binary stars can be usedto understand the root cause of the stellar metallicity-planetconnection.

VLT observations of GRS 1915+105
We present near infrared spectroscopy of the superluminal microquasarGRS 1915+105 obtained with the first unit of the VLT and the ISAACspectro-imager. The emission features detected in the VLT data have beenidentified as He I, Br gamma , He II and Na I. The detection of Na I isreported here for the first time, while our confirmation of weak He IIemission provides support to previous marginal detections of thisfeature. By comparing the observed spectra with those of massive stars,we find that our results are very consistent with GRS 1915+105 being ahigh mass X-ray system with an early type primary, as previouslyproposed by Chaty et al. (1996) and Mirabel et al. (1997). The VLTspectra also provide evidence of P Cygni profiles, that turn into blueemission wings when the system is in outburst. This observed lineprofile evolution implies that GRS 1915+105 must be surrounded by anexpanding envelope, that is partially blown out during the X-rayoutbursts. The presence of such circumstellar gaseous material aroundGRS 1915+105 is more naturally understood in the context of a massiveluminous star than if the system was a low-mass X-ray binary.Based on observations collected at the European Southern Observatory,Chile (ESO No 63.H-0261).

Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue.
We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.

CA II H and K measurements made at Mount Wilson Observatory, 1966-1983
Summaries are presented of the photoelectric measurements of stellar CaII H and K line intensity made at Mount Wilson Observatory during theyears 1966-1983. These results are derived from 65,263 individualobservations of 1296 stars. For each star, for each observing season,the maximum, minimum, mean, and variation of the instrumental H and Kindex 'S' are given, as well as a measurement of the accuracy ofobservation. A total of 3110 seasonal summaries are reported. Factorswhich affect the ability to detect stellar activity variations andaccurately measure their amplitudes, such as the accuracy of the H and Kmeasurements and scattered light contamination, are discussed. Relationsare given which facilitate intercomparison of 'S' values with residualintensities derived from ordinary spectrophotometry, and for convertingmeasurements to absolute fluxes.

Photoelectric observations of CPM stars in the BVRI system
A photometric program to estimate the frequency of close unresolvedcompanions in visual binary systems has been developed. The sensitivityof the detection depends on the accuracy of the differential photometricmeasurements of binary components. Unresolved companions up to sevenmagnitudes fainter than the primary are detectable in the BVRIphotometric systems.

Common proper motion stars in the AGK 3
A search was made of common-proper-motion (CPM) systems among AGK 3stars. The selection of physical systems was based upon the ratiobetween the angular separation (rho) and the proper motion (mu); the CPMstars found are presented in two tables. Table I lists systems withrho/mu less than 1000 years. It contains 326 entries, and the proportionof optical pairs is estimated to be 1 percent. Table II lists systemswith rho/mu in the range 1000 to 3500 years; it contains 113 systems,but only 60 percent of them are physical. Nevertheless, these systemsoften have separations larger than 10,000 AU and are the mostinteresting for the study of the tail of the distribution function ofthe semimajor axes.

A list of stars with common proper motions.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1958AJ.....63..246V&db_key=AST

Radial Velocities, Spectral Types, and Luminosity Classes of 820 Stars.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1950ApJ...112...48M&db_key=AST

Új cikk hozzáadása


Kapcsolódó hivatkozások

  • - (nincs kapcsolódó hivatkozás) -
Új link hozzáadása


Besorolás csoportokba:


Pozíciós és asztrometriai adatok

Csillagkép:Vízöntő
Rektaszcenzió:20h14m09.18s
Deklináció:+06°34'37.9"
Vizuális fényesség:7.985
Távolság:65.833 parszek
RA sajátmozgás:-131.9
Dec sajátmozgás:-62.5
B-T magnitude:8.837
V-T magnitude:8.056

Katalógusok és elnevezések:
Megfelelő nevek
HD 1989HD 192343
TYCHO-2 2000TYC 507-1271-1
USNO-A2.0USNO-A2 0900-18048717
HIPHIP 99727

→ További katalógusok és elnevezések lekérése VizieR-ből