Home     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Astro Photo     The Collection     Forum     Blog New!     FAQ     Login  
→ Adopt this star  

HD 212882


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Spectroscopic binaries among Hipparcos M giants^,. I. Data, orbits, and intrinsic variations
Context: This paper is a follow-up on the vast effort to collect radialvelocity data for stars belonging to the Hipparcos survey. Aims: We aimat extending the orbital data available for binaries with M giantprimaries. The data presented in this paper will be used in thecompanion papers of this series to (i) derive the binary frequency amongM giants and compare it to that of K giants (Paper II); and (ii) analysethe eccentricity - period diagram and the mass-function distribution(Paper III). Methods: Keplerian solutions are fitted to radial-velocitydata. However, for several stars, no satisfactory solution could befound, even though the radial-velocity standard deviation is greaterthan the instrumental error, because M giants suffer from intrinsicradial-velocity variations due to pulsations. We show that theseintrinsic radial-velocity variations can be linked with both the averagespectral-line width and the photometric variability. Results: Wepresent an extensive collection of spectroscopic orbits for M giantswith 12 new orbits, plus 17 from the literature. On top of these, 1preliminary orbit yielded an approximate value for the eccentricity andthe orbital period. Moreover, to illustrate how the largeradial-velocity jitter present in Mira and semi-regular variables mayeasily be confused with orbital variations, we also present examples ofpseudo-orbital variations (in S UMa, X Cnc, and possibly in HD 115 521,a former IAU radial-velocity standard). Because of this difficulty, Mgiants involving Mira variables were excluded from our monitored sample.We finally show that the majority of M giants detected as X-ray sourcesare actually binaries. Conclusions: The data presented in this paperconsiderably increase the orbital data set for M giants, and will allowus to conduct a detailed analysis of the eccentricity - period diagramin a companion paper (Paper III).Based on observations carried out at the Swiss telescope installed atthe Observatoire de Haute Provence (OHP, France), and at the 1.93-m OHPtelescope. Full Tables 2, 3, and Table 6 are only available inelectronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/498/627

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

Local kinematics of K and M giants from CORAVEL/Hipparcos/Tycho-2 data. Revisiting the concept of superclusters
The availability of the Hipparcos Catalogue has triggered many kinematicand dynamical studies of the solar neighbourhood. Nevertheless, thosestudies generally lacked the third component of the space velocities,i.e., the radial velocities. This work presents the kinematic analysisof 5952 K and 739 M giants in the solar neighbourhood which includes forthe first time radial velocity data from a large survey performed withthe CORAVEL spectrovelocimeter. It also uses proper motions from theTycho-2 catalogue, which are expected to be more accurate than theHipparcos ones. An important by-product of this study is the observedfraction of only 5.7% of spectroscopic binaries among M giants ascompared to 13.7% for K giants. After excluding the binaries for whichno center-of-mass velocity could be estimated, 5311 K and 719 M giantsremain in the final sample. The UV-plane constructed from these datafor the stars with precise parallaxes (σπ/π≤20%) reveals a rich small-scale structure, with several clumpscorresponding to the Hercules stream, the Sirius moving group, and theHyades and Pleiades superclusters. A maximum-likelihood method, based ona Bayesian approach, has been applied to the data, in order to make fulluse of all the available stars (not only those with precise parallaxes)and to derive the kinematic properties of these subgroups. Isochrones inthe Hertzsprung-Russell diagram reveal a very wide range of ages forstars belonging to these groups. These groups are most probably relatedto the dynamical perturbation by transient spiral waves (as recentlymodelled by De Simone et al. \cite{Simone2004}) rather than to clusterremnants. A possible explanation for the presence of younggroup/clusters in the same area of the UV-plane is that they have beenput there by the spiral wave associated with their formation, while thekinematics of the older stars of our sample has also been disturbed bythe same wave. The emerging picture is thus one of dynamical streamspervading the solar neighbourhood and travelling in the Galaxy withsimilar space velocities. The term dynamical stream is more appropriatethan the traditional term supercluster since it involves stars ofdifferent ages, not born at the same place nor at the same time. Theposition of those streams in the UV-plane is responsible for the vertexdeviation of 16.2o ± 5.6o for the wholesample. Our study suggests that the vertex deviation for youngerpopulations could have the same dynamical origin. The underlyingvelocity ellipsoid, extracted by the maximum-likelihood method afterremoval of the streams, is not centered on the value commonly acceptedfor the radial antisolar motion: it is centered on < U > =-2.78±1.07 km s-1. However, the full data set(including the various streams) does yield the usual value for theradial solar motion, when properly accounting for the biases inherent tothis kind of analysis (namely, < U > = -10.25±0.15 kms-1). This discrepancy clearly raises the essential questionof how to derive the solar motion in the presence of dynamicalperturbations altering the kinematics of the solar neighbourhood: doesthere exist in the solar neighbourhood a subset of stars having no netradial motion which can be used as a reference against which to measurethe solar motion?Based on observations performed at the Swiss 1m-telescope at OHP,France, and on data from the ESA Hipparcos astrometry satellite.Full Table \ref{taba1} is only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/430/165}

The association of IRAS sources and 12CO emission in the outer Galaxy
We have revisited the question of the association of CO emission withIRAS sources in the outer Galaxy using data from the FCRAO Outer GalaxySurvey (OGS). The availability of a large-scale high-resolution COsurvey allows us to approach the question of IRAS-CO associations from anew direction - namely we examined all of the IRAS sources within theOGS region for associated molecular material. By investigating theassociation of molecular material with random lines of sight in the OGSregion we were able to construct a quantitative means to judge thelikelihood that any given IRAS-CO association is valid and todisentangle multiple emission components along the line of sight. Thepaper presents a list of all of the IRAS-CO associations in the OGSregion. We show that, within the OGS region, there is a significantincrease ( ~ 22%) in the number of probable star forming regions overprevious targeted CO surveys towards IRAS sources. As a demonstration ofthe utility of the IRAS-CO association table we present the results ofthree brief studies on candidate zone-of-avoidance galaxies with IRAScounterparts, far outer Galaxy CO clouds, and very bright CO clouds withno associated IRAS sources. We find that ~ 25% of such candidate ZOAGsare Galactic objects. We have discovered two new far outer Galaxystar-forming regions, and have discovered six bright molecular cloudsthat we believe are ideal targets for the investigation of the earlieststages of sequential star formation around HII regions. Finally, thispaper provides readers with the necessary data to compare othercatalogued data sets with the OGS data.Tables 1, 2 and A1 are only available in electronic form at the CDS viaanonymous ftp to\ cdsarc.u-strasbg.fr (130.79.128.5) or via\http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/399/1083

Hipparcos red stars in the HpV_T2 and V I_C systems
For Hipparcos M, S, and C spectral type stars, we provide calibratedinstantaneous (epoch) Cousins V - I color indices using newly derivedHpV_T2 photometry. Three new sets of ground-based Cousins V I data havebeen obtained for more than 170 carbon and red M giants. These datasetsin combination with the published sources of V I photometry served toobtain the calibration curves linking Hipparcos/Tycho Hp-V_T2 with theCousins V - I index. In total, 321 carbon stars and 4464 M- and S-typestars have new V - I indices. The standard error of the mean V - I isabout 0.1 mag or better down to Hp~9 although it deteriorates rapidly atfainter magnitudes. These V - I indices can be used to verify thepublished Hipparcos V - I color indices. Thus, we have identified ahandful of new cases where, instead of the real target, a random fieldstar has been observed. A considerable fraction of the DMSA/C and DMSA/Vsolutions for red stars appear not to be warranted. Most likely suchspurious solutions may originate from usage of a heavily biased color inthe astrometric processing.Based on observations from the Hipparcos astrometric satellite operatedby the European Space Agency (ESA 1997).}\fnmsep\thanks{Table 7 is onlyavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/397/997

Classification and Identification of IRAS Sources with Low-Resolution Spectra
IRAS low-resolution spectra were extracted for 11,224 IRAS sources.These spectra were classified into astrophysical classes, based on thepresence of emission and absorption features and on the shape of thecontinuum. Counterparts of these IRAS sources in existing optical andinfrared catalogs are identified, and their optical spectral types arelisted if they are known. The correlations between thephotospheric/optical and circumstellar/infrared classification arediscussed.

Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue.
We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.

Infrared Spectral Classification of Hetzler Stars
Not Available

The Distribution of the BD M-Type Stars Along the Galactic Equator.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1958ApJ...128..510N&db_key=AST

Radial Velocities, Spectral Types, and Luminosity Classes of 820 Stars.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1950ApJ...112...48M&db_key=AST

Infrared Stellar Surveys and Index Sequences
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1937ApJ....86..509H&db_key=AST

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:ケフェウス座
Right ascension:22h25m46.91s
Declination:+63°19'42.0"
Apparent magnitude:6.922
Distance:274.725 parsecs
Proper motion RA:25
Proper motion Dec:-2.4
B-T magnitude:8.895
V-T magnitude:7.085

Catalogs and designations:
Proper Names
HD 1989HD 212882
TYCHO-2 2000TYC 4268-1207-1
USNO-A2.0USNO-A2 1500-09062388
HIPHIP 110706

→ Request more catalogs and designations from VizieR