Home     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Astro Photo     The Collection     Forum     Blog New!     FAQ     Login  
→ Adopt this star  

HD 149414


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Orbit Determination of Double-lined Spectroscopic Binaries by Fitting the Revised Hipparcos Intermediate Astrometric Data
Untill now, the Hipparcos intermediate astrometric data (HIAD) havecontributed little to the full orbit determination of double-linedspectroscopic binaries (SB2s). This is because the photocenter of such abinary system is usually not far from the system mass center, and itsorbital wobble is generally weak with respect to the accuracy of theHIAD. However, the HIAD have been recently revised and the accuracy isincreased by a factor of 2.2 in the total weight. Therefore, it isinteresting to see if the revised HIAD can be used in the orbitdetermination at least for some SB2s. In this paper, we first search the9th Catalogue of Orbits of Spectroscopic Binaries (S B9 ) for SB2s with reliable spectroscopic orbitalsolutions and with periods between 50 days and 3.2 years. This leaves uswith 56 systems. The full orbital solutions of these systems are thendetermined from the HIAD by a highly efficient grid search methoddeveloped in this paper. The high efficiency is achieved by reducing thenumber of nonlinear model parameters to one, and by allowing allparameters to be adjustable within a region centered at each grid point.After a variety of tests, we finally accept orbital solutions of 13systems. Among these systems, six (HIP 677, 20894, 87895, 95995, 101382,and 111170) are well resolved with reliable interferometric data.Orbital solutions from these data are consistent with our results. Thefull orbital solutions of the other seven systems (HIP 9121, 17732,32040, 57029, 76006, 102431, and 116360) are determined for the firsttime.

Reaching the boundary between stellar kinematic groups and very wide binaries . II. ? Librae + KU Librae: a common proper motion system in Castor separated by 1.0 pc
Aims: I investigate the gravitational binding of a nearby commonproper motion system in the young Castor moving group (? ~ 200 Ma),which is formed by the bright quadruple star ? Lib (Zubenelgenubi)and the young solar analogue KU Lib. The system has an exceptionallywide angular separation of about 2.6 deg, which corresponds to aprojected physical separation of about 1.0 pc. Methods: Icompiled basic information on the system, compared its binding energywith those of other weakly bound systems in the field, and studied thephysical separations of resolved multiple systems in Castor. Results: KU Lib has roughly the same proper motion, parallacticdistance, radial velocity, and metallicity as the young hierarchicalquadruple system ? Lib. It also displays youth features. Theresemblance between these basic parameters and the relatively highestimated binding energy indicate that the five stars aregravitationally bound. KU Lib and ? Lib constitute the widestknown multiple system in all mass domains, and probably represent themost extreme example of young wide binaries on the point of beingdisrupted. Besides this, I make a comprehensive compilation of starcandidates in Castor, including new ones.

Chemical Abundances of Outer Halo Stars in the Milky Way
We present the chemical abundances of 57 metal-poor ([Fe/H] 5 kpc above andbelow the Galactic plane. High-resolution (R ˜ 50000-55000), highsignal-to-noise (S/N > 100) spectra for the sample stars obtainedwith Subaru/HDS were used to derive the chemical abundances of Na, Mg,Ca, Ti, Cr, Mn, Fe, Ni, Zn, Y, and Ba with an LTE abundance analysiscode. The resulting abundance data were combined with those presented inthe literature that mostly targeted at smaller Zmax stars,and both data were used to investigate any systematic trends in detailedabundance patterns depending on their kinematics. It was shown that, inthe metallicity range of ?2 < [Fe/H] < ?1, the [Mg/Fe]ratios for stars with Zmax > 5 kpc are systematicallylower (˜0.1 dex) than those with a smaller Zmax. Forthis metallicity range, a modest degree of depression in the [Si/Fe] andthe [Ca/Fe] ratios was also observed. This result of lower [?/Fe]for the assumed outer halo stars is consistent with previous studiesthat found a signature of lower [?/Fe] ratios for stars withextreme kinematics. The distribution of the [Mg/Fe] ratios for the outerhalo stars partly overlaps with that for stars belonging to the MilkyWay dwarf satellites in the metallicity interval of ?2 < [Fe/H]< ?1 and spans a range intermediate between the distributionsfor the inner halo stars and the stars belonging to the satellites. Ourresults confirm the inhomogeneous nature of the chemical abundanceswithin the Milky Way stellar halo, depending on the kinematic propertiesof the constituent stars, as suggested by earlier studies. Possibleimplications for the formation of the Milky Way halo and its relevanceto the suggested dual nature of the halo are discussed.

Analysis of peculiarities of the stellar velocity field in the solar neighborhood
Based on a new version of the Hipparcos catalogue and an updatedGeneva-Copenhagen survey of F and G dwarfs, we analyze the spacevelocity field of ?17 000 single stars in the solar neighborhood. Themain known clumps, streams, and branches (Pleiades, Hyades, Sirius, ComaBerenices, Hercules, Wolf 630- ? Ceti, and Arcturus) have beenidentified using various approaches. The evolution of the space velocityfield for F and G dwarfs has been traced as a function of the stellarage. We have managed to confirm the existence of the recently discoveredKFR08 stream. We have found 19 Hipparcos stars, candidates formembership in the KFR08 stream, and obtained an isochrone age estimatefor the stream, 13 Gyr. The mean stellar ages of the Wolf 630- ?Ceti and Hercules streams are shown to be comparable, 4-6 Gyr. Nosignificant differences in the metallicities of stars belonging to thesestreams have been found. This is an argument for the hypothesis thatthese streams owe their origin to a common mechanism.

Reaching the boundary between stellar kinematic groups and very wide binaries. The Washington double stars with the widest angular separations
Aims: I look for and characterise very wide binaries and multiplesystems with projected physical separations larger than s = 0.1 pc,which is generally believed to be a sharp upper limit to thedistribution of wide binary semimajor axes. Methods: Iinvestigated in detail 30 Washington double stars with angularseparations of ? > 1000 arcsec. I discarded 23 of them asprobably unbound systems based on discordant astrometry, photometry,spectral types, and radial velocities. The remaining seven systems weresubject to a comprehensive data compilation and derivation(multi-wavelength photometry, heliocentric distance, multiplicity, age,mass, metallicity, membership in a young kinematic group). Results: Of the seven very wide systems, six have projected physicalseparations greater than the hypothetical cutoff at s = 0.1 pc and fourhave separations s > 0.2 pc. Although there are two systems in youngkinematic groups (namely HD 136654 and BD+32 2572 in the HyadesSupercluster, and AU Mic and AT Mic AB in the ? Pictoris movinggroup), there is no clear prevalence of young systems (? < 1 Ga)among these very wide binaries. Finally, I compare the binding energiesof the seven systems with those of other weakly bound systems in thefield.Appendix A is only available in electronic form at http://www.aanda.org

An Overview of the Rotational Behavior of Metal-poor Stars
This paper describes the behavior of the rotational velocity inmetal-poor stars ([Fe/H] <= -0.5 dex) in different evolutionarystages, based on vsin i values from the literature. Our sample iscomprised of stars in the field and some Galactic globular clusters,including stars on the main sequence, the red giant branch (RGB), andthe horizontal branch (HB). The metal-poor stars are, mainly, slowrotators, and their vsin i distribution along the HR diagram is quitehomogeneous. Nevertheless, a few moderate to high values of vsin i arefound in stars located on the main sequence and the HB. We show that theoverall distribution of vsin i values is basically independent ofmetallicity for the stars in our sample. In particular, thefast-rotating main sequence stars in our sample present rotation ratessimilar to their metal-rich counterparts, suggesting that some of themmay actually be fairly young, in spite of their low metallicity, or elsethat at least some of them would be better classified as blue stragglerstars. We do not find significant evidence of evolution in vsin i valuesas a function of position on the RGB; in particular, we do not confirmprevious suggestions that stars close to the RGB tip rotate faster thantheir less-evolved counterparts. While the presence of fast rotatorsamong moderately cool blue HB stars has been suggested to be due toangular momentum transport from a stellar core that has retainedsignificant angular momentum during its prior evolution, we find thatany such transport mechanisms most likely operate very fast as the stararrives on the zero-age HB (ZAHB), since we do not find a link betweenevolution off the ZAHB and vsin i values. We present an extensivetabulation of all quantities discussed in this paper, including rotationvelocities, temperatures, gravities, and metallicities [Fe/H], as wellas broadband magnitudes and colors.

The Geneva-Copenhagen survey of the solar neighbourhood. III. Improved distances, ages, and kinematics
Context: Ages, chemical compositions, velocity vectors, and Galacticorbits for stars in the solar neighbourhood are fundamental test datafor models of Galactic evolution. The Geneva-Copenhagen Survey of theSolar Neighbourhood (Nordström et al. 2004; GCS), amagnitude-complete, kinematically unbiased sample of 16 682 nearby F andG dwarfs, is the largest available sample with complete data for starswith ages spanning that of the disk. Aims: We aim to improve theaccuracy of the GCS data by implementing the recent revision of theHipparcos parallaxes. Methods: The new parallaxes yield improvedastrometric distances for 12 506 stars in the GCS. We also use theparallaxes to verify the distance calibration for uvby? photometryby Holmberg et al. (2007, A&A, 475, 519; GCS II). We add newselection criteria to exclude evolved cool stars giving unreliableresults and derive distances for 3580 stars with large parallax errorsor not observed by Hipparcos. We also check the GCS II scales of T_effand [Fe/H] and find no need for change. Results: Introducing thenew distances, we recompute MV for 16 086 stars, and U, V, W,and Galactic orbital parameters for the 13 520 stars that also haveradial-velocity measurements. We also recompute stellar ages from thePadova stellar evolution models used in GCS I-II, using the new valuesof M_V, and compare them with ages from the Yale-Yonsei andVictoria-Regina models. Finally, we compare the observed age-velocityrelation in W with three simulated disk heating scenarios to show thepotential of the data. Conclusions: With these revisions, thebasic data for the GCS stars should now be as reliable as is possiblewith existing techniques. Further improvement must await consolidationof the T_eff scale from angular diameters and fluxes, and the Gaiatrigonometric parallaxes. We discuss the conditions for improvingcomputed stellar ages from new input data, and for distinguishingdifferent disk heating scenarios from data sets of the size andprecision of the GCS.Full Table 1 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/501/941

Beryllium abundances and star formation in the halo and in the thick disk
Context: Beryllium is a pure product of cosmic ray spallation. Thisimplies a relatively simple evolution in time of the beryllium abundanceand suggests its use as a time-like observable. Aims: Our goal is toderive abundances of Be in a sample of 90 stars, the largest sample ofhalo and thick disk stars analyzed to date. We study the evolution of Bein the early Galaxy and its dependence on kinematic and orbitalparameters, and investigate its use as a cosmochronometer. Abundances ofBe, Fe, and α-elements of 73 stars are employed to study theformation of the halo and the thick disk of the Galaxy. Methods:Beryllium abundances are determined from high-resolution, highsignal-to-noise UVES spectra with spectrum synthesis. Atmosphericparameters and abundances of α-elements are adopted from theliterature. Lithium abundances are used to eliminate mixed stars fromthe sample. The properties of halo and thick disk stars are investigatedin diagrams of log(Be/H) vs. [ α/H] , log(Be/H) vs. [Fe/H], and [α/Fe] vs. log(Be/H) and with orbital and kinematic parameters. Results: We present our observational results in various diagrams. (i)In a log(Be/H) vs. [Fe/H] diagram we find a marginal statisticaldetection of a real scatter, above what is expected from measurementerrors, with a larger scatter among halo stars. The detection of thescatter is further supported by the existence of pairs of stars withidentical atmospheric parameters and different Be abundances; (ii) in alog(Be/H) vs. [ α/Fe] diagram, the halo stars separate into twocomponents; one is consistent with predictions of evolutionary models,while the other has too high α and Be abundances and is chemicallyindistinguishable from thick disk stars. This suggests that the halo isnot a single uniform population where a clear age-metallicity relationcan be defined; (iii) In diagrams of R_min vs. [ α/Fe] andlog(Be/H), the thick disk stars show a possible decrease in [α/Fe] with R_min, whereas no dependence of Be with R_min is seen.This anticorrelation suggests that the star formation rate was lower inthe outer regions of the thick disk, pointing towards an inside-outformation. The lack of correlation for Be indicates that it isinsensitive to the local conditions of star formation.Based on observations made with ESO VLT, at Paranal Observatory, underprograms 076.B-0133 and 077.B-0507, and on data obtained from theESO/ST-ECF Science Archive Facility and the UVES Paranal ObservatoryProject 266.D-5655.Tables 1-3, 6 and Appendices A-C are only available in electronic format http://www.aanda.org

Calibration of Strömgren uvby-H? photometry for late-type stars - a model atmosphere approach
Context: The use of model atmospheres for deriving stellar fundamentalparameters, such as T_eff, log g, and [Fe/H], will increase as we findand explore extreme stellar populations where empirical calibrations arenot yet available. Moreover, calibrations for upcoming large satellitemissions of new spectrophotometric indices, similar to the uvby-H?system, will be needed. Aims: We aim to test the power oftheoretical calibrations based on a new generation of MARCS models bycomparisons with observational photomteric data. Methods: Wecalculated synthetic uvby-H? colour indices from synthetic spectra.A sample of 367 field stars, as well as stars in globular clusters, isused for a direct comparison of the synthetic indices versus empiricaldata and for scrutinizing the possibilities of theoretical calibrationsfor temperature, metallicity, and gravity. Results: We show thatthe temperature sensitivity of the synthetic (b-y) colour is very closeto its empirical counterpart, whereas the temperature scale based uponH? shows a slight offset. The theoretical metallicity sensitivityof the m1 index (and for G-type stars its combination withc_1) is somewhat higher than the empirical one, based upon spectroscopicdeterminations. The gravity sensitivity of the synthetic c1index shows satisfactory behaviour when compared to obervations of Fstars. For stars cooler than the sun, a deviation is significant in thec1-(b-y) diagram. The theoretical calibrations of (b-y),(v-y), and c1 seem to work well for Pop II stars and lead toeffective temperatures for globular cluster stars supporting recentclaims that atomic diffusion occurs in stars near the turnoff point ofNGC 6397. Conclusions: Synthetic colours of stellar atmospherescan indeed be used, in many cases, to derive reliable fundamentalstellar parameters. The deviations seen when compared to observationaldata could be due to incomplete linelists but are possibly also due tothe effects of assuming plane-parallell or spherical geometry and LTE.Model colours are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/498/527

Chemical Inhomogeneities in the Milky Way Stellar Halo
We have compiled a sample of 699 stars from the recent literature withdetailed chemical abundance information (spanning –4.2lsim [Fe/H]lsim+0.3), and we compute their space velocities and Galactic orbitalparameters. We identify members of the inner and outer stellar halopopulations in our sample based only on their kinematic properties andthen compare the abundance ratios of these populations as a function of[Fe/H]. In the metallicity range where the two populations overlap(–2.5lsim [Fe/H] lsim–1.5), the mean [Mg/Fe] of the outerhalo is lower than the inner halo by –0.1 dex. For [Ni/Fe] and[Ba/Fe], the star-to-star abundance scatter of the inner halo isconsistently smaller than in the outer halo. The [Na/Fe], [Y/Fe],[Ca/Fe], and [Ti/Fe] ratios of both populations show similar means andlevels of scatter. Our inner halo population is chemically homogeneous,suggesting that a significant fraction of the Milky Way stellar halooriginated from a well-mixed interstellar medium. In contrast, our outerhalo population is chemically diverse, suggesting that anothersignificant fraction of the Milky Way stellar halo formed in remoteregions where chemical enrichment was dominated by local supernovaevents. We find no abundance trends with maximum radial distance fromthe Galactic center or maximum vertical distance from the Galactic disk.We also find no common kinematic signature for groups of metal-poorstars with peculiar abundance patters, such as the α-poor stars orstars showing unique neutron-capture enrichment patterns. Several starsand dwarf spheroidal systems with unique abundance patterns spend themajority of their time in the distant regions of the Milky Way stellarhalo, suggesting that the true outer halo of the Galaxy may have littleresemblance to the local stellar halo.

A catalogue of chromospherically active binary stars (third edition)
The catalogue of chromospherically active binaries (CABs) has beenrevised and updated. With 203 new identifications, the number of CABstars is increased to 409. The catalogue is available in electronicformat where each system has a number of lines (suborders) with a uniqueorder number. The columns contain data of limited numbers of selectedcross references, comments to explain peculiarities and the position ofthe binarity in case it belongs to a multiple system, classicalidentifications (RS Canum Venaticorum, BY Draconis), brightness andcolours, photometric and spectroscopic data, a description of emissionfeatures (CaII H and K, Hα, ultraviolet, infrared),X-ray luminosity, radio flux, physical quantities and orbitalinformation, where each basic entry is referenced so users can go to theoriginal sources.

Comparative statistics and origin of triple and quadruple stars
The statistics of catalogued quadruple stars consisting of two binaries(hierarchy 2 + 2), is studied in comparison with triple stars, withrespective sample sizes of 81 and 724. Seven representative quadruplesystems are discussed in greater detail. The main conclusions are asfollows. (i) Quadruple systems of ? Lyr type with similar massesand inner periods are common, in 42 per cent of the sample the outermass ratio is above 0.5 and the inner periods differ by less than 10times. (ii) The distributions of the inner periods in triple andquadruple stars are similar and bimodal. The inner mass ratios do notcorrelate with the inner periods. (iii) The statistics of outer periodsand mass ratios in triples and quadruples are different. The medianouter mass ratio in triples is 0.39 independently of the outer period,which has a smooth distribution. In contrast, the outer periods of 25per cent quadruples concentrate in the narrow range from 10 to 100yr,the outer mass ratios of these tight quadruples are above 0.6 and theirtwo inner periods are similar to each other. (iv) The outer and innermass ratios in triple and quadruple stars are not mutually correlated.In 13 per cent of quadruples both inner mass ratios are above 0.85(double twins). (v) The inner and outer orbital angular momenta andperiods in triple and quadruple systems with inner periods above 30dshow some correlation, the ratio of outer-to-inner periods is mostlycomprised between 5 and 104. In the systems with small periodratios the directions of the orbital spins are correlated, while in thesystems with large ratios they are not. The properties of multiple starsdo not correspond to the products of dynamical decay of small clusters,hence the N-body dynamics is not the dominant process of theirformation. On the other hand, rotationally driven (cascade)fragmentation possibly followed by migration of inner and/or outerorbits to shorter periods is a promising scenario to explain the originof triple and quadruple stars.

Speckle interferometry of metal-poor stars in the solar neighborhood. II
The results of speckle interferometric observations of 115 metal-poorstars ([m/H] < ‑1) within 250 pc from the Sun and with propermotions µ ≳ 0.2″/yr, made with the 6-m telescope of theSpecial Astrophysical Observatory of the Russian Academy of Sciences,are reported. Close companions with separations ranging from0.034″ to 1″ were observed for 12 objects—G76-21,G59-1, G63-46, G135-16, G168-42, G141-47, G142-44, G190-10, G28-43,G217-8, G130-7, and G89-14—eight of them are astrometricallyresolved for the first time. The newly resolved systems include onetriple star—G190-10. If combined with spectroscopic and visualdata, our results imply a single:binary:triple:quadruple star ratio of147:64:9:1 for a sample of 221 primary components of halo and thick-diskstars.

The usage of Strömgren photometry in studies of local group dwarf spheroidal galaxies. Application to Draco: a new catalogue of Draco members and a study of the metallicity distribution function and radial gradients
Aims.In this paper we demonstrate how Strömgren uvby photometry canbe efficiently used to: 1. identify red giant branch stars that aremembers in a dwarf spheroidal galaxy; 2. derive age-independentmetallicities for the same stars and quantify the associated errors. Methods: Strömgren uvby photometry in a 11 × 22 arcmin fieldcentered on the Draco dwarf spheroidal galaxy was obtained using theIsaac Newton Telescope on La Palma. Members of the Draco dSph galaxywere identified using the surface gravity sensitive c1 indexwhich discriminates between red giant and dwarf stars. Thus enabling usto distinguish the (red giant branch) members of the dwarf spheroidalgalaxy from the foreground dwarf stars in our galaxy. The method isevaluated through a comparison of our membership list with membershipclassifications in the literature based on radial velocities and propermotions. The metallicity sensitive m1 index was used toderive individual and age-independent metallicities for the members ofthe Draco dSph galaxy. The derived metallicities are compared to studiesbased on high resolution spectroscopy and the agreement is found to bevery good. Results: We present metallicities for 169 members of the redgiant branch in the Draco dwarf spheroidal galaxy (the largest sample todate). The metallicity distribution function for the Draco dSph galaxyshows a mean [Fe/H] = -1.74 dex with a spread of 0.24 dex. Thecorrelation between metallicity and colour for the stars on the redgiant branch is consistent with a dominant old, and coeval population.There is a possible spatial population gradient over the field with themost metal-rich stars being more centrally concentrated than themetal-poor stars.Based on observations made with the Isaac Newton Telescope, operated onthe Island of La Palma by the Isaac Newton Group in the SpanishObservatorio del Roque de los Muchachos of the Instituto de Astrofisicade Canarias. Guest User, Canadian Astronomy Data Centre, which isoperated by the Herzberg Institute of Astrophysics, National ResearchCouncil of Canada. Full Tables 2 and 6 are only available athttp://www.aanda.org

Accurate fundamental parameters for lower main-sequence stars
We derive an empirical effective temperature and bolometric luminositycalibration for G and K dwarfs, by applying our own implementation ofthe Infrared Flux Method to multiband photometry. Our study is based on104 stars for which we have excellent BV(RI)C JHKSphotometry, excellent parallaxes and good metallicities.Colours computed from the most recent synthetic libraries (ATLAS9 andMARCS) are found to be in good agreement with the empirical colours inthe optical bands, but some discrepancies still remain in the infrared.Synthetic and empirical bolometric corrections also show fair agreement.A careful comparison to temperatures, luminosities and angular diametersobtained with other methods in the literature shows that systematiceffects still exist in the calibrations at the level of a few per cent.Our Infrared Flux Method temperature scale is 100-K hotter than recentanalogous determinations in the literature, but is in agreement withspectroscopically calibrated temperature scales and fits well thecolours of the Sun. Our angular diameters are typically 3 per centsmaller when compared to other (indirect) determinations of angulardiameter for such stars, but are consistent with the limb-darkeningcorrected predictions of the latest 3D model atmospheres and also withthe results of asteroseismology.Very tight empirical relations are derived for bolometric luminosity,effective temperature and angular diameter from photometric indices.We find that much of the discrepancy with other temperature scales andthe uncertainties in the infrared synthetic colours arise from theuncertainties in the use of Vega as the flux calibrator. Angulardiameter measurements for a well-chosen set of G and K dwarfs would go along way to addressing this problem.

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

A catalog of rotational and radial velocities for evolved stars. IV. Metal-poor stars^
Aims.The present paper describes the first results of an observationalprogram intended to refine and extend the existing v sin i measurementsof metal-poor stars, with an emphasis on field evolved stars.Methods: .The survey was carried out with the FEROS and CORALIEspectrometers. For the v sin i measurements, obtained from spectralsynthesis, we estimate an uncertainty of about 2.0 km s-1. Results: .Precise rotational velocities v sin i are presented for alarge sample of 100 metal-poor stars, most of them evolving off themain-sequence. For the large majority of the stars composing the presentsample, rotational velocities have been measured for the first time.

Metallicity and absolute magnitude calibrations for UBV photometry
Calibrations are presented here for metallicity ([Fe/H]) in terms of theultraviolet excess, [δ(U - B) at B - V = 0.6, hereafterδ0.6], and also for the absolute visual magnitude(MV) and its difference with respect to the Hyades(ΔMHV) in terms of δ0.6 and(B - V), making use of high-resolution spectroscopic abundances from theliterature and Hipparcos parallaxes. The relation[Fe/H]-δ0.6 has been derived for dwarf plus turn-offstars, and also for dwarf, turn-off, plus subgiant stars classifiedusing the MV-(B - V)0 plane of Fig. 11, which iscalibrated with isochrones from Bergbusch & VandenBerg (and alsoVandenBerg & Clem). The [Fe/H]-δ0.6 relations inour equations (5) and (6) agree well with those of Carney, as can beseen from Fig. 5(a). Within the uncertainties, the zero-points,+0.13(+/-0.05) of equation (5) and +0.13(+/-0.04) of equation (6), arein good agreement with the photometric ones of Cameron and of Carney,and close to the spectroscopic ones of Cayrel et al. and of Boesgaard& Friel for the Hyades open cluster. Good quantitative agreementbetween our estimated [Fe/H] abundances with those from uvby-βphotometry and spectroscopic [Fe/H]spec values demonstratesthat our equation (6) can be used in deriving quality photometric metalabundances for field stars and clusters using UBV data from variousphotometric surveys.For dwarf and turn-off stars, a new hybrid MV calibration ispresented, based on Hipparcos parallaxes withσπ/π <= 0.1 and with a dispersion of +/-0.24in MV. This hybrid MV calibration containsδ0.6 and (B - V) terms, plus higher order cross-termsof these, and is valid for the ranges of +0.37 <= (B - V)0<= +0.88,- 0.10 <= δ0.6 <= +0.29 and 3.44<= MV <= 7.23. For dwarf and turn-off stars, therelation for ΔMHV is revised and updated interms of (B - V) and δ0.6, for the ranges of -0.10<= δ0.6 <= +0.29, and +0.49 <= (B -V)0 <= +0.89, again making use of Hipparcos parallaxeswith σπ/π <= 0.1. These parallaxes formetal-poor dwarf and turn-off stars in our sample reveal that thedifference of ΔMHV(B - V) relative to Hyadesat (B - V) = +0.70 should be 1.37mag, instead of the 1.58mag given byLaird et al. In general, Hipparcos parallaxes are larger thanground-based ones, causing a divergence of ourΔMHV(B - V,δ0.6) relation(the solid line in Fig. 15b), from the one of Laird et al. (the dashedline) for the range +0.10 <= δ0.6 <= +0.29 ourabsolute magnitudes are fainter, as has been confirmed for localsubdwarfs by Reid. Our final calibrations forΔMHV(B - V, δ0.6),equations (16) and (17), are third-order polynomials inδ0.6, pass through the origin, and provide photometricdistances in reasonable agreement with those obtained directly fromHipparcos parallaxes (Fig. 18).

uvby-β photometry of high-velocity and metal-poor stars. XI. Ages of halo and old disk stars
New uvby-β data are provided for 442 high-velocity and metal-poorstars; 90 of these stars have been observed previously by us, and 352are new. When combined with our previous two photometric catalogues, thedata base is now made up of 1533 high-velocity and metal-poor stars, allwith uvby-β photometry and complete kinematic data, such as propermotions and radial velocities taken from the literature. Hipparcos, plusa new photometric calibration for Mv also based on theHipparcos parallaxes, provide distances for nearly all of these stars;our previous photometric calibrations give values for E(b-y) and [Fe/H].The [Fe/H], V(rot) diagram allows us to separate these stars intodifferent Galactic stellar population groups, such as old-thin-disk,thick-disk, and halo. The X histogram, where X is our stellar-populationdiscriminator combining V(rot) and [Fe/H], and contour plots for the[Fe/H], V(rot) diagram both indicate two probable components to thethick disk. These population groups and Galactic components are studiedin the (b-y)0, Mv diagram, compared to theisochrones of Bergbusch & VandenBerg (2001, ApJ, 556, 322), toderive stellar ages. The two thick-disk groups have the meancharacteristics: ([Fe/H], V(rot), Age, σW') ≈ (-0.7dex, 120 km s-1, 12.5 Gyr, 62.0 km s-1), and≈(-0.4, 160, 10.0, 45.8). The seven most metal-poor halo groups,-2.31 ≤ [Fe/H] ≤ -1.31, show a mean age of 13.0 ± 0.2(mean error) Gyr, giving a mean difference from the WMAP results for theage of the Universe of 0.7 ± 0.3 Gyr. These results for the agesand components of the thick disk and for the age of the Galactic halofield stars are discussed in terms of various models and ideas for theformation of galaxies and their stellar populations.

The lithium content of the Galactic Halo stars
Thanks to the accurate determination of the baryon density of theuniverse by the recent cosmic microwave background experiments, updatedpredictions of the standard model of Big Bang nucleosynthesis now yieldthe initial abundance of the primordial light elements withunprecedented precision. In the case of ^7Li, the CMB+SBBN value issignificantly higher than the generally reported abundances for Pop IIstars along the so-called Spite plateau. In view of the crucialimportance of this disagreement, which has cosmological, galactic andstellar implications, we decided to tackle the most critical issues ofthe problem by revisiting a large sample of literature Li data in halostars that we assembled following some strict selection criteria on thequality of the original analyses. In the first part of the paper wefocus on the systematic uncertainties affecting the determination of theLi abundances, one of our main goal being to look for the "highestobservational accuracy achievable" for one of the largest sets of Liabundances ever assembled. We explore in great detail the temperaturescale issue with a special emphasis on reddening. We derive four sets ofeffective temperatures by applying the same colour {T}_eff calibrationbut making four different assumptions about reddening and determine theLTE lithium values for each of them. We compute the NLTE corrections andapply them to the LTE lithium abundances. We then focus on our "best"(i.e. most consistent) set of temperatures in order to discuss theinferred mean Li value and dispersion in several {T}_eff and metallicityintervals. The resulting mean Li values along the plateau for [Fe/H]≤ 1.5 are A(Li)_NLTE = 2.214±0.093 and 2.224±0.075when the lowest effective temperature considered is taken equal to 5700K and 6000 K respectively. This is a factor of 2.48 to 2.81 (dependingon the adopted SBBN model and on the effective temperature range chosento delimit the plateau) lower than the CMB+SBBN determination. We findno evidence of intrinsic dispersion. Assuming the correctness of theCMB+SBBN prediction, we are then left with the conclusion that the Liabundance along the plateau is not the pristine one, but that halo starshave undergone surface depletion during their evolution. In the secondpart of the paper we further dissect our sample in search of newconstraints on Li depletion in halo stars. By means of the Hipparcosparallaxes, we derive the evolutionary status of each of our samplestars, and re-discuss our derived Li abundances. A very surprisingresult emerges for the first time from this examination. Namely, themean Li value as well as the dispersion appear to be lower (althoughfully compatible within the errors) for the dwarfs than for the turnoffand subgiant stars. For our most homogeneous dwarfs-only sample with[Fe/H] ≤ 1.5, the mean Li abundances are A(L)_NLTE = 2.177±0.071 and 2.215±0.074 when the lowest effective temperatureconsidered is taken equal to 5700 K and 6000 K respectively. This is afactor of 2.52 to 3.06 (depending on the selected range in {T}_eff forthe plateau and on the SBBN predictions we compare to) lower than theCMB+SBBN primordial value. Instead, for the post-main sequence stars thecorresponding values are 2.260±0.1 and 2.235±0.077, whichcorrespond to a depletion factor of 2.28 to 2.52. These results,together with the finding that all the stars with Li abnormalities(strong deficiency or high content) lie on or originate from the hotside of the plateau, lead us to suggest that the most massive of thehalo stars have had a slightly different Li history than their lessmassive contemporaries. In turn, this puts strong new constraints on thepossible depletion mechanisms and reinforces Li as a stellartomographer.

Astrometric orbits of SB^9 stars
Hipparcos Intermediate Astrometric Data (IAD) have been used to deriveastrometric orbital elements for spectroscopic binaries from the newlyreleased Ninth Catalogue of Spectroscopic Binary Orbits(SB^9). This endeavour is justified by the fact that (i) theastrometric orbital motion is often difficult to detect without theprior knowledge of the spectroscopic orbital elements, and (ii) suchknowledge was not available at the time of the construction of theHipparcos Catalogue for the spectroscopic binaries which were recentlyadded to the SB^9 catalogue. Among the 1374 binaries fromSB^9 which have an HIP entry (excluding binaries with visualcompanions, or DMSA/C in the Double and Multiple Stars Annex), 282 havedetectable orbital astrometric motion (at the 5% significance level).Among those, only 70 have astrometric orbital elements that are reliablydetermined (according to specific statistical tests), and for the firsttime for 20 systems. This represents a 8.5% increase of the number ofastrometric systems with known orbital elements (The Double and MultipleSystems Annex contains 235 of those DMSA/O systems). The detection ofthe astrometric orbital motion when the Hipparcos IAD are supplementedby the spectroscopic orbital elements is close to 100% for binaries withonly one visible component, provided that the period is in the 50-1000 drange and the parallax is >5 mas. This result is an interestingtestbed to guide the choice of algorithms and statistical tests to beused in the search for astrometric binaries during the forthcoming ESAGaia mission. Finally, orbital inclinations provided by the presentanalysis have been used to derive several astrophysical quantities. Forinstance, 29 among the 70 systems with reliable astrometric orbitalelements involve main sequence stars for which the companion mass couldbe derived. Some interesting conclusions may be drawn from this new setof stellar masses, like the enigmatic nature of the companion to theHyades F dwarf HIP 20935. This system has a mass ratio of 0.98 but thecompanion remains elusive.

A Survey of Proper-Motion Stars. XVII. A Deficiency of Binary Stars on Retrograde Galactic Orbits and the Possibility that ω Centauri is Related to the Effect
We compare the frequency of field binary stars as a function of Galacticvelocity vectors and find a deficiency of such stars on stronglyretrograde orbits. Metal-poor stars moving on prograde Galactic orbitshave a binary frequency of 28%+/-3%, whereas the retrograde stars'binary frequency is only 10%+/-2% for V<=-300 km s-1. Nosuch binary deficiencies are seen for the U or W velocities, nor for[Fe/H]. Some mechanism exists that either disrupts binary systems orpreferentially adds single stars moving primarily on retrograde orbits.Theoretical analyses and critical evaluations of our observational dataappear to rule out preferential disruption of preexisting binary starsdue to such causes as tidal interactions with massive gravitationalperturbers, including giant molecular clouds, black holes, or theGalactic center.Dynamically evolved stellar ensembles, such as globular clusters,provide a possible source of single stars. Three lines of evidence ruleout this explanation. First, there is no mechanism to significantlyenhance dissolution of clusters moving on retrograde orbits. Second, astudy of globular clusters moving on prograde and retrograde orbits andwith perigalacticon distances such that they are unlikely to be affectedstrongly by central tidal effects shows that clusters moving on progradeGalactic orbits may be more evolved dynamically than clusters moving onretrograde orbits. Finally, we have undertaken a comprehensive searchfor star streams that might be discernible. Monte Carlo modelingsuggests that our sample may include one moving group, but it containsonly five stars. Although the Galactic orbit of this group passes nearthe Galactic center, it is not moving on a retrograde Galactic orbit andfalls short by a factor of at least 20 in supplying the necessary numberof single stars.There is one intriguing possibility to explain our results. A dissolveddwarf galaxy may have too large a velocity spread to be easily detectedin our sample using our technique. However, dwarf galaxies appear tooften show element-to-iron versus [Fe/H] abundance patterns that are notsimilar to the bulk of the stellar field and cluster halo stars. Weexplore the s-process elements Y and Ba. Eight stars in our sample havesuch elemental abundances already measured and also lie in the criticaldomain with -1.6<=[Fe/H]<=-1.0 and V<=-300 km s-1.The admittedly small samples appears to show a bimodal distribution in[Y/Fe], [Ba/Fe], and [α/Fe], where ``α'' represents anaverage abundance of Mg, Si, Ca, and Ti. This behavior is reminiscent ofthe difference in the abundances found between the globular clusterω Centauri and other globular clusters. It is also intriguing thatthe stars most similar to ω Cen in their chemical abundances showa relatively coherent set of kinematic properties, with a modestvelocity dispersion. The stars less like ω Cen define adynamically hot population. The binary frequency of the stars in ωCen does not appear to be enhanced, but detailed modeling of the radialvelocity data remains to be done.

The Rise of the s-Process in the Galaxy
From newly obtained high-resolution, high signal-to-noise ratio spectrathe abundances of the elements La and Eu have been determined over thestellar metallicity range -3<[Fe/H]<+0.3 in 159 giant and dwarfstars. Lanthanum is predominantly made by the s-process in the solarsystem, while Eu owes most of its solar system abundance to ther-process. The changing ratio of these elements in stars over a widemetallicity range traces the changing contributions of these twoprocesses to the Galactic abundance mix. Large s-process abundances canbe the result of mass transfer from very evolved stars, so to identifythese cases we also report carbon abundances in our metal-poor stars.Results indicate that the s-process may be active as early as[Fe/H]=-2.6, although we also find that some stars as metal-rich as[Fe/H]=-1 show no strong indication of s-process enrichment. There is asignificant spread in the level of s-process enrichment even at solarmetallicity.

Chemical abundances of 10 metal-poor halo stars
We present observations of ten metal-poor halo stars with themetallicity range -2.3 < [Fe/H] < -1.4 and derive their stellarparameters, acquire some elemental abundances relative to iron anddiscuss the relation between the abundance ratio and the metallicity. Itwas found that oxygen abundances are nearly constant at a level of 0.6dex for our metal-poor halo stars when the non-LTE correction isconsidered. The α-elements (Mg, Si, Ca and Ti) are overabundantrelative to Fe and decrease with increasing metallicity. We alsoobtained a significant underabundant non-LTE [Na/Fe] ratio from Na I Dlines which have a large deviation from the LTE assumption. Scandium ismarginally overabundant with respect to iron and tends to decrease withincreasing metallicity like the α-elements. A nearly solar valueof [Cr/Fe] ratio and underabundant [Mn/Fe] ratio are obtained.

Stellar Chemical Signatures and Hierarchical Galaxy Formation
To compare the chemistries of stars in the Milky Way dwarf spheroidal(dSph) satellite galaxies with stars in the Galaxy, we have compiled alarge sample of Galactic stellar abundances from the literature. Whenkinematic information is available, we have assigned the stars tostandard Galactic components through Bayesian classification based onGaussian velocity ellipsoids. As found in previous studies, the[α/Fe] ratios of most stars in the dSph galaxies are generallylower than similar metallicity Galactic stars in this extended sample.Our kinematically selected stars confirm this for the Galactic halo,thin-disk, and thick-disk components. There is marginal overlap in thelow [α/Fe] ratios between dSph stars and Galactic halo stars onextreme retrograde orbits (V<-420 km s-1), but this is notsupported by other element ratios. Other element ratios compared in thispaper include r- and s-process abundances, where we find a significantoffset in the [Y/Fe] ratios, which results in a large overabundance in[Ba/Y] in most dSph stars compared with Galactic stars. Thus, thechemical signatures of most of the dSph stars are distinct from thestars in each of the kinematic components of the Galaxy. This resultrules out continuous merging of low-mass galaxies similar to these dSphsatellites during the formation of the Galaxy. However, we do not ruleout very early merging of low-mass dwarf galaxies, since up to one-halfof the most metal-poor stars ([Fe/H]<=-1.8) have chemistries that arein fair agreement with Galactic halo stars. We also do not rule outmerging with higher mass galaxies, although we note that the LMC and theremnants of the Sgr dwarf galaxy are also chemically distinct from themajority of the Galactic halo stars. Formation of the Galaxy's thickdisk by heating of an old thin disk during a merger is also not ruledout; however, the Galaxy's thick disk itself cannot be comprised of theremnants from a low-mass (dSph) dwarf galaxy, nor of a high-mass dwarfgalaxy like the LMC or Sgr, because of differences in chemistry.The new and independent environments offered by the dSph galaxies alsoallow us to examine fundamental assumptions related to thenucleosynthesis of the elements. The metal-poor stars ([Fe/H]<=-1.8)in the dSph galaxies appear to have lower [Ca/Fe] and [Ti/Fe] than[Mg/Fe] ratios, unlike similar metallicity stars in the Galaxy.Predictions from the α-process (α-rich freeze-out) would beconsistent with this result if there have been a lack of hypernovae indSph galaxies. The α-process could also be responsible for thevery low Y abundances in the metal-poor stars in dSph's; since [La/Eu](and possibly [Ba/Eu]) are consistent with pure r-process results, thelow [Y/Eu] suggests a separate r-process site for this light(first-peak) r-process element. We also discuss SNe II rates and yieldsas other alternatives, however. In stars with higher metallicities([Fe/H]>=-1.8), contributions from the s-process are expected; [(Y,La, and Ba)/Eu] all rise as expected, and yet [Ba/Y] is still muchhigher in the dSph stars than similar metallicity Galactic stars. Thisresult is consistent with s-process contributions from lower metallicityAGB stars in dSph galaxies, and is in good agreement with the slowerchemical evolution expected in the low-mass dSph galaxies relative tothe Galaxy, such that the build-up of metals occurs over much longertimescales. Future investigations of nucleosynthetic constraints (aswell as galaxy formation and evolution) will require an examination ofmany stars within individual dwarf galaxies.Finally, the Na-Ni trend reported in 1997 by Nissen & Schuster isconfirmed in Galactic halo stars, but we discuss this in terms of thegeneral nucleosynthesis of neutron-rich elements. We do not confirm thatthe Na-Ni trend is related to the accretion of dSph galaxies in theGalactic halo.

SB9: The ninth catalogue of spectroscopic binary orbits
The Ninth Catalogue of Spectroscopic Binary Orbits(http://sb9.astro.ulb.ac.be) continues the series of compilations ofspectroscopic orbits carried out over the past 35 years by Batten andcollaborators. As of 2004 May 1st, the new Catalogue holds orbits for2386 systems. Some essential differences between this catalogue and itspredecessors are outlined and three straightforward applications arepresented: (1) completeness assessment: period distribution of SB1s andSB2s; (2) shortest periods across the H-R diagram; (3)period-eccentricity relation.

Statistical properties of solar-type close binaries
Two Coravel radial velocity surveys dedicated to F7-K field dwarfs andto open clusters are merged in order to investigate the statisticalproperties of binaries with periods up to 10 years. Thanks to theaccurate trigonometric parallaxes provided by Hipparcos, an unbiasedsample of spectroscopic binaries (SB) is selected. After correction forthe uncertainties of the measurements, the following results areobtained: 1. The distribution of mass ratios exhibits a peak forequal-mass binaries (twins), which is higher for short-period binariesthan for long-period binaries. 2. Apart from the twins, the distributionof mass ratios exhibits a broad peak from 0.2 to 0.6. 3. The orbitaleccentricities of twins are slightly smaller than those of otherbinaries. 4. An excess of SB is observed with periods shorter than about50 days in comparison with the Duquennoy and Mayor log-normaldistribution of periods. These features suggest that close binary starsare generated by two different processes. A possible difference couldcome from the accretion onto the binary, for instance from a commonenvelope or from a circumbinary disk. Alternatively, twins could comefrom dynamic evolution of multiple systems. It is not clear whether theformation models are already sufficiently elaborated to reproduce ourstatistics.

The distance to NGC 5904 (M 5) via the subdwarf main sequence fitting method
We present a determination of the distance modulus of the globularcluster NGC 5904 (M 5), obtained by means of the subdwarf main-sequencefitting on the (V,V-I) color-magnitude diagram. The subdwarf sample hasbeen selected from the HIPPARCOS catalog in a metallicity rangehomogeneous with the cluster ([Fe/H] ≃ -1.1). Both the cluster andthe subdwarfs have been observed with the sametelescope+instrument+filters setup (namely, ESO-NTT equipped with theSUSI2 camera), in order to preserve homogeneity and reduce systematicuncertainties. A set of archival HST data has then been used to obtain adeep and precise ridge line. These have been accurately calibrated inthe ground photometric system by using the NTT data and used to fit thecluster distance modulus. By adopting the most commonly accepted valuesfor the reddening, E(B-V) = 0.035 and 0.03, we obtain respectivelyμ0 = 14.44 ± 0.09 ± 0.07 andμ0 = 14.41 ± 0.09 ± 0.07, in agreement withrecent determinations.Based on data collected at ESO-La Silla, Chile, (GTO 63.L-0717) and fromHST archival data (GO 8310).

A CCD imaging search for wide metal-poor binaries
We explored the regions within a radius of 25 arcsec around 473 nearby,low-metallicity G- to M-type stars using (VR)I optical filters andsmall-aperture telescopes. About 10% of the sample was searched up toangular separations of 90 arcsec. We applied photometric and astrometrictechniques to detect true physical companions to the targets. The greatmajority of the sample stars was drawn from the Carney-Latham surveys;their metallicities range from roughly solar to [Fe/H] = -3.5 dex. OurI-band photometric survey detected objects that are between 0 and 5 magfainter (completeness) than the target stars; the maximum dynamicalrange of our exploration is 9 mag. We also investigated the literature,and inspected images from the Digitized Sky Surveys to complete oursearch. By combining photometric and proper motion measurements, weretrieved 29 previously known companions, and identified 13 new propermotion companions. Near-infrared 2MASS photometry is provided for thegreat majority of them. Low-resolution optical spectroscopy (386-1000nm) was obtained for eight of the new companion stars. Thesespectroscopic data confirm them as cool, late-type, metal-depleteddwarfs, with spectral classes from esdK7 to sdM3. After comparison withlow-metallicity evolutionary models, we estimate the masses of theproper motion companion stars to be in the range 0.5-0.1Mȯ. They are moving around their primary stars atprojected separations between ˜32 and ˜57 000 AU. These orbitalsizes are very similar to those of solar-metallicity stars of the samespectral types. Our results indicate that about 15% of the metal-poorstars have stellar companions in wide orbits, which is in agreement withthe binary fraction observed among main sequence G- to M-type stars andT Tauri stars.Based on observations made with the IAC80 telescope operated on theisland of Tenerife by the Instituto de Astrofísica de Canarias inthe Spanish Observatorio del Teide; also based on observations made withthe 2.2 m telescope of the German-Spanish Calar Alto Observatory(Almería, Spain), the William Herschel Telescope (WHT) operatedon the island of La Palma by the Isaac Newton Group in the SpanishObservatorio del Roque de los Muchachos (ORM) of the Instituto deAstrofísica de Canarias; and the Telescopio Nazionale Galileo(TNG) at the ORM.The complete Table 1 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/419/167

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:へびつかい座
Right ascension:16h34m42.35s
Declination:-04°13'44.6"
Apparent magnitude:9.598
Distance:48.286 parsecs
Proper motion RA:-133.1
Proper motion Dec:-698.9
B-T magnitude:10.505
V-T magnitude:9.673

Catalogs and designations:
Proper Names
HD 1989HD 149414
TYCHO-2 2000TYC 5056-892-1
HIPHIP 81170

→ Request more catalogs and designations from VizieR