Home     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Astro Photo     The Collection     Forum     Blog New!     FAQ     Login  
→ Adopt this star  

HD 124106


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

The Geneva-Copenhagen survey of the solar neighbourhood. III. Improved distances, ages, and kinematics
Context: Ages, chemical compositions, velocity vectors, and Galacticorbits for stars in the solar neighbourhood are fundamental test datafor models of Galactic evolution. The Geneva-Copenhagen Survey of theSolar Neighbourhood (Nordström et al. 2004; GCS), amagnitude-complete, kinematically unbiased sample of 16 682 nearby F andG dwarfs, is the largest available sample with complete data for starswith ages spanning that of the disk. Aims: We aim to improve theaccuracy of the GCS data by implementing the recent revision of theHipparcos parallaxes. Methods: The new parallaxes yield improvedastrometric distances for 12 506 stars in the GCS. We also use theparallaxes to verify the distance calibration for uvby? photometryby Holmberg et al. (2007, A&A, 475, 519; GCS II). We add newselection criteria to exclude evolved cool stars giving unreliableresults and derive distances for 3580 stars with large parallax errorsor not observed by Hipparcos. We also check the GCS II scales of T_effand [Fe/H] and find no need for change. Results: Introducing thenew distances, we recompute MV for 16 086 stars, and U, V, W,and Galactic orbital parameters for the 13 520 stars that also haveradial-velocity measurements. We also recompute stellar ages from thePadova stellar evolution models used in GCS I-II, using the new valuesof M_V, and compare them with ages from the Yale-Yonsei andVictoria-Regina models. Finally, we compare the observed age-velocityrelation in W with three simulated disk heating scenarios to show thepotential of the data. Conclusions: With these revisions, thebasic data for the GCS stars should now be as reliable as is possiblewith existing techniques. Further improvement must await consolidationof the T_eff scale from angular diameters and fluxes, and the Gaiatrigonometric parallaxes. We discuss the conditions for improvingcomputed stellar ages from new input data, and for distinguishingdifferent disk heating scenarios from data sets of the size andprecision of the GCS.Full Table 1 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/501/941

Spectroscopic parameters for 451 stars in the HARPS GTO planet search program. Stellar [Fe/H] and the frequency of exo-Neptunes
To understand the formation and evolution of solar-type stars in thesolar neighborhood, we need to measure their stellar parameters to highaccuracy. We present a catalogue of accurate stellar parameters for 451stars that represent the HARPS Guaranteed Time Observations (GTO)“high precision” sample. Spectroscopic stellar parameterswere measured using high signal-to-noise (S/N) spectra acquired with theHARPS spectrograph. The spectroscopic analysis was completed assumingLTE with a grid of Kurucz atmosphere models and the recent ARES code formeasuring line equivalent widths. We show that our results agree wellwith those ones presented in the literature (for stars in common). Wepresent a useful calibration for the effective temperature as a functionof the index color B-V and [Fe/H]. We use our results to study themetallicity-planet correlation, namely for very low mass planets. Theresults presented here suggest that in contrast to their joviancouterparts, neptune-like planets do not form preferentially aroundmetal-rich stars. The ratio of jupiter-to-neptunes is also an increasingfunction of stellar metallicity. These results are discussed in thecontext of the core-accretion model for planet formation.Based on observations collected at La Silla Observatory, ESO, Chile,with the HARPS spectrograph at the 3.6-m telescope (072.C-0488(E)). FullTables 1 and 3 are only available in electronic form at the CDS vianonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/487/373

The main sequence from F to K stars of the solar neighbourhood in SDSS colours
For an understanding of Galactic stellar populations in the SDSS filtersystem well defined stellar samples are needed. The nearby stars providea complete stellar sample representative for the thin disc population.We compare the filter transformations of different authors applied tothe main sequence stars from F to K dwarfs to SDSS filter system anddiscuss the properties of the main sequence. The location of the meanmain sequence in colour-magnitude diagrams is very sensitive tosystematic differences in the filter transformation. A comparison withfiducial sequences of star clusters observed in g', r', and i' show goodagreement. Theoretical isochrones from Padua and from Dartmouth havestill some problems, especially in the (r-i) colours.

The Gemini Deep Planet Survey
We present the results of the Gemini Deep Planet Survey, a near-infraredadaptive optics search for giant planets and brown dwarfs around 85nearby young stars. The observations were obtained with the Altairadaptive optics system at the Gemini North telescope, and angulardifferential imaging was used to suppress the speckle noise of thecentral star. Typically, the observations are sensitive to angularseparations beyond 0.5" with 5 σ contrast sensitivities inmagnitude difference at 1.6 μm of 9.5 at 0.5", 12.9 at 1", 15.0 at2", and 16.5 at 5". These sensitivities are sufficient to detect planetsmore massive than 2 MJ with a projected separation in therange 40-200 AU around a typical target. Second-epoch observations of 48stars with candidates (out of 54) have confirmed that all candidates areunrelated background stars. A detailed statistical analysis of thesurvey results is presented. Assuming a planet mass distributiondn/dm~m-1.2 and a semimajor-axis distributiondn/da~a-1, the 95% credible upper limits on the fraction ofstars with at least one planet of mass 0.5-13 MJ are 0.28 forthe range 10-25 AU, 0.13 for 25-50 AU, and 0.093 for 50-250 AU; thisresult is weakly dependent on the semimajor-axis distribution power-lawindex. The 95% credible interval for the fraction of stars with at leastone brown dwarf companion having a semimajor axis in the range 25-250 AUis 0.019+0.083-0.015, irrespective of anyassumption on the mass and semimajor-axis distributions. Theobservations made as part of this survey have resolved the stars HD14802, HD 166181, and HD 213845 into binaries for the first time.Based on observations obtained at the Gemini Observatory, which isoperated by the Association of Universities for Research in Astronomy,Inc., under a cooperative agreement with the NSF on behalf of the Geminipartnership: the National Science Foundation (United States), theParticle Physics and Astronomy Research Council (United Kingdom), theNational Research Council (Canada), CONICYT (Chile), the AustralianResearch Council (Australia), CNPq (Brazil), and CONICET (Argentina).

On the Mass of the Neutron Star in V395 Carinae/2S 0921-630
We report high-resolution optical spectroscopy of the low-mass X-raybinary V395 Car/2S 0921-630 obtained with the MIKE echelle spectrographon the Magellan-Clay telescope. Our spectra are obtained near theinferior conjunction of the mass donor star, and we exploit theabsorption lines originating from the back side of the K-type object toaccurately derive its rotational velocity. Using K0-K1 III templates, wefind vsini=32.9+/-0.8 km s-1. We show that the choice oftemplate star and the assumed limb-darkening coefficient has littleimpact on the derived rotational velocity. This value is a significantrevision downward compared to previously published values. We derive newsystem parameter constraints in light of our much lower rotationalvelocity. We find M1=1.44+/-0.10 Msolar,M2=0.35+/-0.03 Msolar, and q=0.24+/-0.02, wherethe errors have been estimated through a Monte Carlo simulation. Apossible remaining systematic effect is the fact that we may beoverestimating the orbital velocity of the mass donor due to irradiationeffects. However, any correction for this effect will only reduce thecompact object mass further, down to a minimum mass ofM1=1.05+/-0.08 Msolar. There is thus strongevidence that the compact object in this binary is a neutron star ofrather typical mass and that the previously reported mass values of 2-4Msolar were too high due to an overestimate of the rotationalbroadening.

Structure and Evolution of Nearby Stars with Planets. II. Physical Properties of ~1000 Cool Stars from the SPOCS Catalog
We derive detailed theoretical models for 1074 nearby stars from theSPOCS (Spectroscopic Properties of Cool Stars) Catalog. The Californiaand Carnegie Planet Search has obtained high-quality (R~=70,000-90,000,S/N~=300-500) echelle spectra of over 1000 nearby stars taken with theHamilton spectrograph at Lick Observatory, the HIRES spectrograph atKeck, and UCLES at the Anglo Australian Observatory. A uniform analysisof the high-resolution spectra has yielded precise stellar parameters(Teff, logg, vsini, [M/H], and individual elementalabundances for Fe, Ni, Si, Na, and Ti), enabling systematic erroranalyses and accurate theoretical stellar modeling. We have created alarge database of theoretical stellar evolution tracks using the YaleStellar Evolution Code (YREC) to match the observed parameters of theSPOCS stars. Our very dense grids of evolutionary tracks eliminate theneed for interpolation between stellar evolutionary tracks and allowprecise determinations of physical stellar parameters (mass, age,radius, size and mass of the convective zone, surface gravity, etc.).Combining our stellar models with the observed stellar atmosphericparameters and uncertainties, we compute the likelihood for each set ofstellar model parameters separated by uniform time steps along thestellar evolutionary tracks. The computed likelihoods are used for aBayesian analysis to derive posterior probability distribution functionsfor the physical stellar parameters of interest. We provide a catalog ofphysical parameters for 1074 stars that are based on a uniform set ofhigh-quality spectral observations, a uniform spectral reductionprocedure, and a uniform set of stellar evolutionary models. We explorethis catalog for various possible correlations between stellar andplanetary properties, which may help constrain the formation anddynamical histories of other planetary systems.

Accurate fundamental parameters for lower main-sequence stars
We derive an empirical effective temperature and bolometric luminositycalibration for G and K dwarfs, by applying our own implementation ofthe Infrared Flux Method to multiband photometry. Our study is based on104 stars for which we have excellent BV(RI)C JHKSphotometry, excellent parallaxes and good metallicities.Colours computed from the most recent synthetic libraries (ATLAS9 andMARCS) are found to be in good agreement with the empirical colours inthe optical bands, but some discrepancies still remain in the infrared.Synthetic and empirical bolometric corrections also show fair agreement.A careful comparison to temperatures, luminosities and angular diametersobtained with other methods in the literature shows that systematiceffects still exist in the calibrations at the level of a few per cent.Our Infrared Flux Method temperature scale is 100-K hotter than recentanalogous determinations in the literature, but is in agreement withspectroscopically calibrated temperature scales and fits well thecolours of the Sun. Our angular diameters are typically 3 per centsmaller when compared to other (indirect) determinations of angulardiameter for such stars, but are consistent with the limb-darkeningcorrected predictions of the latest 3D model atmospheres and also withthe results of asteroseismology.Very tight empirical relations are derived for bolometric luminosity,effective temperature and angular diameter from photometric indices.We find that much of the discrepancy with other temperature scales andthe uncertainties in the infrared synthetic colours arise from theuncertainties in the use of Vega as the flux calibrator. Angulardiameter measurements for a well-chosen set of G and K dwarfs would go along way to addressing this problem.

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

The mass of the compact object in the low-mass X-ray binary 2S 0921-630
We interpret the observed radial-velocity curve of the optical star inthe low-mass X-ray binary 2S 0921-630 using a Roche model, taking intoaccount the X-ray heating of the optical star and screening of X-rayscoming from the relativistic object by the accretion disk. Consequencesof possible anisotropy of the X-ray radiation are considered. We obtainrelations between the masses of the optical and compact (X-ray)components, m v and m x , for orbital inclinations i = 60°,75°, and 90°. Including X-ray heating enabled usto reduce the compact object’s mass by ˜0.5 1 M ?,compared to the case with no heating. Based on the K0III spectral typeof the optical component (with a probable mass of m v ? 2.9 M?), we concluded that m x ? 2.45-2.55 M ? (for i =75°-90°). If the K0III star has lost a substantialpart of its mass as a result of mass exchange, as in the V404 Cyg andGRS 1905+105 systems, and its mass is m v ? 0.65-0.75 M ?, thecompact object’s mass is close to the standard mass of a neutronstar, m x ? 1.4 M ? (for i = 75°-90°).Thus, it is probable that the X-ray source in the 2S 0921-630 binary isan accreting neutron star.

Contributions to the Nearby Stars (NStars) Project: Spectroscopy of Stars Earlier than M0 within 40 pc-The Southern Sample
We are obtaining spectra, spectral types, and basic physical parametersfor the nearly 3600 dwarf and giant stars earlier than M0 in theHipparcos catalog within 40 pc of the Sun. Here we report on resultsfor 1676 stars in the southern hemisphere observed at Cerro TololoInter-American Observatory and Steward Observatory. These resultsinclude new, precise, homogeneous spectral types, basic physicalparameters (including the effective temperature, surface gravity, andmetallicity [M/H]), and measures of the chromospheric activity of ourprogram stars. We include notes on astrophysically interesting stars inthis sample, the metallicity distribution of the solar neighborhood, anda table of solar analogs. We also demonstrate that the bimodal nature ofthe distribution of the chromospheric activity parameterlogR'HK depends strongly on the metallicity, andwe explore the nature of the ``low-metallicity'' chromosphericallyactive K-type dwarfs.

Differential Radial Velocities and Stellar Parameters of Nearby Young Stars
Radial velocity searches for substellar-mass companions have focusedprimarily on stars older than 1 Gyr. Increased levels of stellaractivity in young stars hinders the detection of solar system analogs,and therefore until recently there has been a prejudice againstinclusion of young stars in radial velocity surveys. Adaptive opticssurveys of young stars have given us insight into the multiplicity ofyoung stars, but only for massive, distant companions. Understanding thelimit of the radial velocity technique, restricted to high-mass,close-orbiting planets and brown dwarfs, we began a survey of youngstars of various ages. While the number of stars needed to carry outfull analysis of the problems of planetary and brown dwarf populationand evolution is large, the beginning of such a sample is included here.We report on 61 young stars ranging in age from the β Pictorisassociation (~12 Myr) to the Ursa Major association (~300 Myr). Thisinitial search resulted in no stars showing evidence of companionslarger than ~1MJup-2MJup in short-period orbits atthe 3 σ level. We also present derived stellar parameters, as mosthave unpublished values. The chemical homogeneity of a cluster, andpresumably of an association, may help to constrain true membership, sowe present [Fe/H] abundances for the stars in our sample.

Effective temperature scale and bolometric corrections from 2MASS photometry
We present a method to determine effective temperatures, angularsemi-diameters and bolometric corrections for population I and II FGKtype stars based on V and 2MASS IR photometry. Accurate calibration isaccomplished by using a sample of solar analogues, whose averagetemperature is assumed to be equal to the solar effective temperature of5777 K. By taking into account all possible sources of error we estimateassociated uncertainties to better than 1% in effective temperature andin the range 1.0-2.5% in angular semi-diameter for unreddened stars.Comparison of our new temperatures with other determinations extractedfrom the literature indicates, in general, remarkably good agreement.These results suggest that the effective temperaure scale of FGK starsis currently established with an accuracy better than 0.5%-1%. Theapplication of the method to a sample of 10 999 dwarfs in the Hipparcoscatalogue allows us to define temperature and bolometric correction (Kband) calibrations as a function of (V-K), [m/H] and log g. Bolometriccorrections in the V and K bands as a function of T_eff, [m/H] and log gare also given. We provide effective temperatures, angularsemi-diameters, radii and bolometric corrections in the V and K bandsfor the 10 999 FGK stars in our sample with the correspondinguncertainties.

How Dry is the Brown Dwarf Desert? Quantifying the Relative Number of Planets, Brown Dwarfs, and Stellar Companions around Nearby Sun-like Stars
Sun-like stars have stellar, brown dwarf, and planetary companions. Tohelp constrain their formation and migration scenarios, we analyze theclose companions (orbital period <5 yr) of nearby Sun-like stars. Byusing the same sample to extract the relative numbers of stellar, browndwarf, and planetary companions, we verify the existence of a very drybrown dwarf desert and describe it quantitatively. With decreasing mass,the companion mass function drops by almost 2 orders of magnitude from 1Msolar stellar companions to the brown dwarf desert and thenrises by more than an order of magnitude from brown dwarfs toJupiter-mass planets. The slopes of the planetary and stellar companionmass functions are of opposite sign and are incompatible at the 3σ level, thus yielding a brown dwarf desert. The minimum number ofcompanions per unit interval in log mass (the driest part of the desert)is at M=31+25-18MJ. Approximately 16%of Sun-like stars have close (P<5 yr) companions more massive thanJupiter: 11%+/-3% are stellar, <1% are brown dwarf, and 5%+/-2% aregiant planets. The steep decline in the number of companions in thebrown dwarf regime, compared to the initial mass function of individualstars and free-floating brown dwarfs, suggests either a differentspectrum of gravitational fragmentation in the formation environment orpost-formation migratory processes disinclined to leave brown dwarfs inclose orbits.

Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs
We present a uniform catalog of stellar properties for 1040 nearby F, G,and K stars that have been observed by the Keck, Lick, and AAT planetsearch programs. Fitting observed echelle spectra with synthetic spectrayielded effective temperature, surface gravity, metallicity, projectedrotational velocity, and abundances of the elements Na, Si, Ti, Fe, andNi, for every star in the catalog. Combining V-band photometry andHipparcos parallaxes with a bolometric correction based on thespectroscopic results yielded stellar luminosity, radius, and mass.Interpolating Yonsei-Yale isochrones to the luminosity, effectivetemperature, metallicity, and α-element enhancement of each staryielded a theoretical mass, radius, gravity, and age range for moststars in the catalog. Automated tools provide uniform results and makeanalysis of such a large sample practical. Our analysis method differsfrom traditional abundance analyses in that we fit the observed spectrumdirectly, rather than trying to match equivalent widths, and wedetermine effective temperature and surface gravity from the spectrumitself, rather than adopting values based on measured photometry orparallax. As part of our analysis, we determined a new relationshipbetween macroturbulence and effective temperature on the main sequence.Detailed error analysis revealed small systematic offsets with respectto the Sun and spurious abundance trends as a function of effectivetemperature that would be inobvious in smaller samples. We attempted toremove these errors by applying empirical corrections, achieving aprecision per spectrum of 44 K in effective temperature, 0.03 dex inmetallicity, 0.06 dex in the logarithm of gravity, and 0.5 kms-1 in projected rotational velocity. Comparisons withprevious studies show only small discrepancies. Our spectroscopicallydetermined masses have a median fractional precision of 15%, but theyare systematically 10% higher than masses obtained by interpolatingisochrones. Our spectroscopic radii have a median fractional precisionof 3%. Our ages from isochrones have a precision that variesdramatically with location in the Hertzsprung-Russell diagram. We planto extend the catalog by applying our automated analysis technique toother large stellar samples.

The Planet-Metallicity Correlation
We have recently carried out spectral synthesis modeling to determineTeff, logg, vsini, and [Fe/H] for 1040 FGK-type stars on theKeck, Lick, and Anglo-Australian Telescope planet search programs. Thisis the first time that a single, uniform spectroscopic analysis has beenmade for every star on a large Doppler planet search survey. We identifya subset of 850 stars that have Doppler observations sufficient todetect uniformly all planets with radial velocity semiamplitudes K>30m s-1 and orbital periods shorter than 4 yr. From this subsetof stars, we determine that fewer than 3% of stars with-0.5<[Fe/H]<0.0 have Doppler-detected planets. Above solarmetallicity, there is a smooth and rapid rise in the fraction of starswith planets. At [Fe/H]>+0.3 dex, 25% of observed stars have detectedgas giant planets. A power-law fit to these data relates the formationprobability for gas giant planets to the square of the number of metalatoms. High stellar metallicity also appears to be correlated with thepresence of multiple-planet systems and with the total detected planetmass. This data set was examined to better understand the origin of highmetallicity in stars with planets. None of the expected fossilsignatures of accretion are observed in stars with planets relative tothe general sample: (1) metallicity does not appear to increase as themass of the convective envelopes decreases, (2) subgiants with planetsdo not show dilution of metallicity, (3) no abundance variations for Na,Si, Ti, or Ni are found as a function of condensation temperature, and(4) no correlations between metallicity and orbital period oreccentricity could be identified. We conclude that stars with extrasolarplanets do not have an accretion signature that distinguishes them fromother stars; more likely, they are simply born in higher metallicitymolecular clouds.Based on observations obtained at Lick and Keck Observatories, operatedby the University of California, and the Anglo-Australian Observatories.

The radial velocity of the companion star in the low-mass X-ray binary 2S 0921-630: limits on the mass of the compact object
In this paper we report on optical spectroscopic observations of thelow-mass X-ray binary 2S 0921-630 obtained with the Very LargeTelescope. We found sinusoidal radial velocity variations of thecompanion star with a semi-amplitude of 99.1 +/- 3.1 km s-1modulated on a period of 9.006 +/- 0.007 d, consistent with the orbitalperiod found previously for this source, and a systemic velocity of 44.4+/- 2.4 km s-1. Owing to X-ray irradiation, the centre oflight measured by the absorption lines from the companion star isprobably shifted with respect to the centre of mass. We try to correctfor this using the so-called K-correction. Conservatively applying themaximum correction possible and using the previously measured rotationalvelocity of the companion star, we find a lower limit to the mass of thecompact object in 2S 0921-630 of MX sin3i >1.90 +/- 0.25Msolar (1? errors). The inclination inthis system is well constrained since partial eclipses have beenobserved in X-ray and optical bands. For inclinations in the range60° < i < 90° we find 1.90 +/- 0.25 < MX< 2.9 +/- 0.4Msolar. However, using this maximumK-correction we find that the ratio between the mass of the companionstar and that of the compact object, q, is 1.32 +/- 0.37, implyingsuper-Eddington mass-transfer rates; however, evidence for that has notbeen found in 2S 0921-630. We conclude that the compact object in 2S0921-630 is either a (massive) neutron star or a low-mass black hole.

Chromospheric Ca II Emission in Nearby F, G, K, and M Stars
We present chromospheric Ca II H and K activity measurements, rotationperiods, and ages for ~1200 F, G, K, and M type main-sequence stars from~18,000 archival spectra taken at Keck and Lick Observatories as a partof the California and Carnegie Planet Search Project. We have calibratedour chromospheric S-values against the Mount Wilson chromosphericactivity data. From these measurements we have calculated medianactivity levels and derived R'HK, stellar ages,and rotation periods from general parameterizations for 1228 stars,~1000 of which have no previously published S-values. We also presentprecise time series of activity measurements for these stars.Based on observations obtained at Lick Observatory, which is operated bythe University of California, and on observations obtained at the W. M.Keck Observatory, which is operated jointly by the University ofCalifornia and the California Institute of Technology. The KeckObservatory was made possible by the generous financial support of theW. M. Keck Foundation.

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

WIYN Open Cluster Study. XIX. Main-Sequence-Fitting Distances to Open Clusters Using V-K Color-Magnitude Diagrams
We have combined existing optical magnitudes for stars in seven openclusters and 54 field stars with the corresponding JHKsphotometry from the Two Micron All Sky Survey (2MASS). Combining opticalwith near-IR photometry broadens the color baseline, minimizing theinfluence of photometric errors and allowing better discriminationbetween cluster stars and contaminating foreground and backgroundpopulations. The open clusters in this study include NGC 2516, M35, M34,NGC 3532, M37, M67, and NGC 188. The field stars we are using possesshigh-quality Hipparcos parallaxes and well-determined metal abundances,allowing us to empirically determine the dependence of V-K color onmetal abundance in the range -0.45<=[Fe/H]<=+0.35.Using this relation along with the parallaxes of the field stars, we areable to construct an unevolved main sequence in the [MV,(V-K)0] diagram for a specific abundance. These diagrams arethen used to fit to the cluster main sequences in the (V, V-K)color-magnitude diagram in order to estimate a distance for each opencluster. We find that the resultant distances are within the range ofdistances found in the literature via the main-sequence-fittingtechnique. It is hoped that this will spur an expansion of the current(limited) database of star clusters with high-quality V-K photometrydown to the unevolved main sequence.This publication makes use of data products from the Two Micron All SkySurvey, which is a joint project of the University of Massachusetts andthe Infrared Processing and Analysis Center/California Institute ofTechnology, funded by the National Aeronautics and Space Administrationand the National Science Foundation.

The open cluster distance scale. A new empirical approach
We present new BV(RI)C photometry for a sample of 54 local Gand K stars with accurate Hipparcos parallaxes in the metallicity range-0.4 <= [Fe/H] <= +0.3. We use this sample to develop a completelymodel-independent main sequence (MS) fitting method which we apply to 4open clusters - the Hyades, Praesepe, the Pleiades and NGC 2516 - whichall have direct Hipparcos parallax distance determinations. Comparisonof our MS-fitting results with distances derived from Hipparcosparallaxes enables us to explore whether the discrepancy between theHipparcos distance scale and other MS-fitting methods found for someclusters is a consequence of model assumptions. We find good agreementbetween our results and the Hipparcos ones for the Hyades and Praesepe.For the Pleiades and NGC 2516, when adopting the solar abundancedetermined from spectroscopy, we find significant disagreement at alevel similar to that found by other MS-fitting studies. However, thecolour-colour relationship for both these clusters suggests that theirmetallicity is significantly subsolar. Since the MS-fitting methodrelies on matching the cluster colours to a template MS, we argue that,when applying this method, the appropriate metallicity to adopt is thephotometric subsolar one, not the solar abundance indicated byspectroscopy. Adopting photometric metallicities for all 4 clusters, wefind complete agreement with the Hipparcos results and hence we concludethat the mismatch between the spectroscopic and photometric abundancesfor the Pleiades and NGC 2516 is responsible for the discrepancies indistance estimates found by previous studies. The origin of thismismatch in abundance scales remains an unsolved problem and somepossible causes are discussed.

Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog
We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.

K dwarfs and the chemical evolution of the solar cylinder
K dwarfs have lifetimes older than the present age of the Galactic disc,and are thus ideal stars for investigating the chemical evolution of thedisc. We have developed several photometric metallicity indicators for Kdwarfs, based on a sample of accurate spectroscopic metallicities for 34disc and halo G and K dwarfs. The photometric metallicities lead us todevelop a metallicity index for K dwarfs based only on their position inthe colour-absolute-magnitude diagram. Metallicities have beendetermined for 431 single K dwarfs drawn from the Hipparcos catalogue,selecting the stars by absolute magnitude and removing multiple systems.The sample is essentially a complete reckoning of the metal content innearby K dwarfs. We use stellar isochrones to mark the stars by mass,and select a subset of 220 of the stars, which is complete within anarrow mass interval. We fit the data with a model of the chemicalevolution of the solar cylinder. We find that only a modest cosmicscatter is required to fit our age-metallicity relation. The modelassumes two main infall episodes for the formation of the halo-thickdisc and thin disc, respectively. The new data confirm that the solarneighbourhood formed on a long time-scale of the order of 7 Gyr.

Radial Velocities for 889 Late-Type Stars
We report radial velocities for 844 FGKM-type main-sequence and subgiantstars and 45 K giants, most of which had either low-precision velocitymeasurements or none at all. These velocities differ from the standardstars of Udry et al. by 0.035 km s-1 (rms) for the 26 FGKstandard stars in common. The zero point of our velocities differs fromthat of Udry et al.: =+0.053km s-1. Thus, these new velocities agree with the best knownstandard stars both in precision and zero point, to well within 0.1 kms-1. Nonetheless, both these velocities and the standardssuffer from three sources of systematic error, namely, convectiveblueshift, gravitational redshift, and spectral type mismatch of thereference spectrum. These systematic errors are here forced to be zerofor G2 V stars by using the Sun as reference, with Vesta and day sky asproxies. But for spectral types departing from solar, the systematicerrors reach 0.3 km s-1 in the F and K stars and 0.4 kms-1 in M dwarfs. Multiple spectra were obtained for all 889stars during 4 years, and 782 of them exhibit velocity scatter less than0.1 km s-1. These stars may serve as radial velocitystandards if they remain constant in velocity. We found 11 newspectroscopic binaries and report orbital parameters for them. Based onobservations obtained at the W. M. Keck Observatory, which is operatedjointly by the University of California and the California Institute ofTechnology, and on observations obtained at the Lick Observatory, whichis operated by the University of California.

Late-type members of young stellar kinematic groups - I. Single stars
This is the first paper of a series aimed at studying the properties oflate-type members of young stellar kinematic groups. We concentrate ourstudy on classical young moving groups such as the Local Association(Pleiades moving group, 20-150Myr), IC 2391 supercluster (35Myr), UrsaMajor group (Sirius supercluster, 300Myr), and Hyades supercluster(600Myr), as well as on recently identified groups such as the Castormoving group (200Myr). In this paper we compile a preliminary list ofsingle late-type possible members of some of these young stellarkinematic groups. Stars are selected from previously established membersof stellar kinematic groups based on photometric and kinematicproperties as well as from candidates based on other criteria such astheir level of chromospheric activity, rotation rate and lithiumabundance. Precise measurements of proper motions and parallaxes takenfrom the Hipparcos Catalogue, as well as from the Tycho-2 Catalogue, andpublished radial velocity measurements are used to calculate theGalactic space motions (U, V, W) and to apply Eggen's kinematic criteriain order to determine the membership of the selected stars to thedifferent groups. Additional criteria using age-dating methods forlate-type stars will be applied in forthcoming papers of this series. Afurther study of the list of stars compiled here could lead to a betterunderstanding of the chromospheric activity and their age evolution, aswell as of the star formation history in the solar neighbourhood. Inaddition, these stars are also potential search targets for directimaging detection of substellar companions.

A revision of the solar neighbourhood metallicity distribution
We present a revised metallicity distribution of dwarfs in the solarneighbourhood. This distribution is centred on solar metallicity. Weshow that previous metallicity distributions, selected on the basis ofspectral type, are biased against stars with solar metallicity orhigher. A selection of G-dwarf stars is inherently biased againstmetal-rich stars and is not representative of the solar neighbourhoodmetallicity distribution. Using a sample selected on colour, we obtain adistribution where approximately half the stars in the solarneighbourhood have metallicities higher than [Fe/H]=0. The percentage ofmid-metal-poor stars ([Fe/H]<-0.5) is approximately 4 per cent, inagreement with present estimates of the thick disc. In order to have ametallicity distribution comparable to chemical evolution modelpredictions, we convert the star fraction to mass fraction, and showthat another bias against metal-rich stars affects dwarf metallicitydistributions, due to the colour (or spectral type) limits of thesamples. Reconsidering the corrections resulting from the increasingthickness of the stellar disc with age, we show that the simpleclosed-box model with no instantaneous recycling approximation gives areasonable fit to the observed distribution. Comparisons with theage-metallicity relation and abundance ratios suggest that the simpleclosed-box model may be a viable model of the chemical evolution of theGalaxy at solar radius.

The Vienna-KPNO search for Doppler-imaging candidate stars. I. A catalog of stellar-activity indicators for 1058 late-type Hipparcos stars
We present the results from a spectroscopic Ca ii H&K survey of 1058late-type stars selected from a color-limited subsample of the Hipparcoscatalog. Out of these 1058 stars, 371 stars were found to showsignificant H&K emission, most of them previously unknown; 23% withstrong emission, 36% with moderate emission, and 41% with weak emission.These spectra are used to determine absolute H&K emission-linefluxes, radial velocities, and equivalent widths of theluminosity-sensitive Sr ii line at 4077 Ä. Red-wavelengthspectroscopic and Strömgren y photometric follow-up observations ofthe 371 stars with H&K emission are used to additionally determinethe absolute Hα -core flux, the lithium abundance from the Li i6708 Å equivalent width, the rotational velocity vsin i, theradial velocity, and the light variations and its periodicity. Thelatter is interpreted as the stellar rotation period due to aninhomogeneous surface brightness distribution. 156 stars were found withphotometric periods between 0.29 and 64 days, 11 additional systemsshowed quasi-periodic variations possibly in excess of ~50 days. Further54 stars had variations but no unique period was found, and four starswere essentially constant. Altogether, 170 new variable stars werediscovered. Additionally, we found 17 new SB1 (plus 16 new candidates)and 19 new SB2 systems, as well as one definite and two possible new SB3systems. Finally, we present a list of 21 stars that we think are mostsuitable candidates for a detailed study with the Doppler-imagingtechnique. Tables A1--A3 are only available in electronic form at theCDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

The ROSAT all-sky survey catalogue of the nearby stars
We present X-ray data for all entries of the Third Catalogue of NearbyStars \cite[(Gliese & Jahreiss 1991)]{gli91} that have been detectedas X-ray sources in the ROSAT all-sky survey. The catalogue contains1252 entries yielding an average detection rate of 32.9 percent. Inaddition to count rates, source detection parameters, hardness ratios,and X-ray fluxes we also list X-ray luminosities derived from Hipparcosparallaxes. Catalogue also available at CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Kinematics and Metallicity of Stars in the Solar Region
Several samples of nearby stars with the most accurate astrometric andphotometric parameters are searched for clues to their evolutionaryhistory. The main samples are (1) the main-sequence stars with b - ybetween 0.29 and 0.59 mag (F3 to K1) in the Yale parallax catalog, (2) agroup of high-velocity subgiants studied spectroscopically by Ryan &Lambert, and (3) high-velocity main-sequence stars in the extensiveinvestigation by Norris, Bessel, & Pickles. The major conclusionsare as follows: (1) The oldest stars (halo), t >= 10-12 Gyr, haveV-velocities (in the direction of Galactic rotation and referred to theSun) in the range from about -50 to -800 km s^-1 and have aheavy-element abundance [Fe/H] of less than about -0.8 dex. The agerange of these objects depends on our knowledge of globular clusterages, but if age is correlated with V-velocity, the youngest may be M22and M28 (V ~ -50 km s^-1) and the oldest NGC 3201 (V ~ -500 km s^-1) andassorted field stars. (2) The old disk population covers the large agerange from about 2 Gyr (Hyades, NGC 752) to 10 or 12 Gyr (Arcturusgroup, 47 Tuc), but the lag (V) velocity is restricted to less thanabout 120 km s^-1 and [Fe/H] >= -0.8 or -0.9 dex. The [Fe/H] ~ -0.8dex division between halo and old disk, near t ~ 10-12 Gyr, is marked bya change in the character of the CN index (C_m) and of the blanketingparameter K of the DDO photometry. (3) The young disk population, t <2 Gyr, is confined exclusively to a well-defined area of the (U, V)velocity plane. The age separating young and old disk stars is also thatseparating giant evolution of the Hyades (near main-sequence luminosity)and M67 (degenerate helium cores and a large luminosity rise) kinds. Thetwo disk populations are also separated by such indexes as the g-indexof Geveva photometry. There appears to be no obvious need to invokeexogeneous influences to understand the motion and heavy-elementabundance distributions of the best-observed stars near the Sun.Individual stars of special interest include the parallax star HD 55575,which may be an equal-component binary, and the high-velocity star HD220127, with a well-determined space velocity near 1000 km s^-1.

The Mass Ratio and the Disk Image of the X-Ray Nova GS 2000+25
Keck observations of the black hole candidate GS 2000+25 in quiescencehave recently been used by Filippenko, Matheson, and Barth to determinea mass function f(M_x) = 4.97 +/- 0.10 solar mass for the compactobject. Our reanalysis of the data confirms this result (5.01 +/- 0.12solar mass). We estimate a mass ratio of q = M_c/M_x = 0.042 +/- 0.012from the rotational broadening of the companion star, v sin i = 86 +/- 8km s^-1. From q and the companion star's radial velocity K_c, we derivethe mass of the compact object M_x = (5.44 +/- 0.15) sin^-3 i solar massand the mass of the companion star M_c = (0.23 +/- 0.02) sin^-3 i solarmass. Constraints on the inclination (75 degrees > i > 47 degrees)lead to 6.04 < M_x < 13.9 and 0.26 < M_c < 0.59 (1-sigma) insolar mass units. We determine a spectral type of K3-K6 for thecompanion star, which contributes more than 72% of the light at redwavelengths (94% +/- 5% for K5 V). Our analysis shows that the companionis an undermassive star, slightly evolved but not a subgiant. Consistentwith the work of Filippenko et al. we detect Li I lambda-6708 absorption(equivalent width 150 +/- 85 mA) in the spectrum of the companion. ADoppler image of the system shows evidence for a bright spot whichcontributes 10% of the emission-line flux density, and arises in therange 0.3-0.6 R_L1 of the accretion disk, where L1 is the innerLagrangian point. Along the trajectory of the gas stream, the velocitiesare initially ballistic and gradually become Keplerian. (SECTION: Stars)

Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue.
We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:おとめ座
Right ascension:14h11m46.17s
Declination:-12°36'42.4"
Apparent magnitude:7.937
Distance:23.068 parsecs
Proper motion RA:-256.2
Proper motion Dec:-180.4
B-T magnitude:9.023
V-T magnitude:8.027

Catalogs and designations:
Proper Names
HD 1989HD 124106
TYCHO-2 2000TYC 5561-33-1
USNO-A2.0USNO-A2 0750-08385499
HIPHIP 69357

→ Request more catalogs and designations from VizieR