Home     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Astro Photo     The Collection     Forum     Blog New!     FAQ     Login  
→ Adopt this star  

HD 151211


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

The Geneva-Copenhagen survey of the solar neighbourhood. III. Improved distances, ages, and kinematics
Context: Ages, chemical compositions, velocity vectors, and Galacticorbits for stars in the solar neighbourhood are fundamental test datafor models of Galactic evolution. The Geneva-Copenhagen Survey of theSolar Neighbourhood (Nordström et al. 2004; GCS), amagnitude-complete, kinematically unbiased sample of 16 682 nearby F andG dwarfs, is the largest available sample with complete data for starswith ages spanning that of the disk. Aims: We aim to improve theaccuracy of the GCS data by implementing the recent revision of theHipparcos parallaxes. Methods: The new parallaxes yield improvedastrometric distances for 12 506 stars in the GCS. We also use theparallaxes to verify the distance calibration for uvby? photometryby Holmberg et al. (2007, A&A, 475, 519; GCS II). We add newselection criteria to exclude evolved cool stars giving unreliableresults and derive distances for 3580 stars with large parallax errorsor not observed by Hipparcos. We also check the GCS II scales of T_effand [Fe/H] and find no need for change. Results: Introducing thenew distances, we recompute MV for 16 086 stars, and U, V, W,and Galactic orbital parameters for the 13 520 stars that also haveradial-velocity measurements. We also recompute stellar ages from thePadova stellar evolution models used in GCS I-II, using the new valuesof M_V, and compare them with ages from the Yale-Yonsei andVictoria-Regina models. Finally, we compare the observed age-velocityrelation in W with three simulated disk heating scenarios to show thepotential of the data. Conclusions: With these revisions, thebasic data for the GCS stars should now be as reliable as is possiblewith existing techniques. Further improvement must await consolidationof the T_eff scale from angular diameters and fluxes, and the Gaiatrigonometric parallaxes. We discuss the conditions for improvingcomputed stellar ages from new input data, and for distinguishingdifferent disk heating scenarios from data sets of the size andprecision of the GCS.Full Table 1 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/501/941

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

CCD measurements of visual binaries
CCD measurements of visual double stars were obtained with the ESO 1.5 mdanish reflector. All binaries observed are candidates for the HIPPARCOSInput Catalogue. More than 400 observations have been made in four clearnights. The accuracy obtained is comparable to the accuracy of thephotographic technique, but the observing and reduction times are oneorder of magnitude smaller.

The nature of the Yale Common Proper Motion groups of stars
Attention is given to a large group of approximately 90 stars, twogroups of 20-30 stars, and 12 groups of a few stars each, taken from DDOsystem image tube spectral classification and intermediate bandphotometry for the Yale Common Proper Motion groups of 180 southernstars. Spectroscopic and photometric analyses of these groups haveindicated a very scattered Pop I main sequence in their color-magnitudediagrams. Distance moduli of 5 or less were derived from the averagespectroscopic parallaxes, in keeping with the proper motion amplitude of0.1 arcsec/year. The main sequence of each group shows scatter whenplotted in an HR diagram, indicating that they are probably nothomogeneous groups of stars sharing common physical origins.

The distance and mass of the large elephant trunk, a CO cloud pointing towards NGC 6231
Photoelectric UBV-H-beta photometry of stars in the region of the ScoOB1 association indicates that the elephant trunk-shaped dark cloudpointing towards NGC 6231, the central cluster of the association, isindeed located at about the same distance as the cluster, some 2.0 kpcaway. This is deduced from the fact that the only OB star projected onthe elephant trunk, No. 3748, lies at 2.2 kpc and has above averagereddening. In addition, a strong CO molecular radio source recently islocated in the trunk. It has a radial velocity similar to that of the HII region and the star cluster. The elephant-trunk structure is muchlarger than elephant trunks known in other galactic nebulae. Its totalmass is likely to lie between 2000 and 40,000 solar masses. The locationof the dark cloud within the extended H II region surrounding the ScoOB1 association is discussed. The orientation of the elongated darkcloud may be caused by radiation pressure from ionizing photons emittedby the central cluster.

Determination of proper motions in the region of the association Scorpius OB1
Not Available

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:さそり座
Right ascension:16h47m53.44s
Declination:-40°58'22.8"
Apparent magnitude:8.206
Distance:85.763 parsecs
Proper motion RA:22.5
Proper motion Dec:-113
B-T magnitude:8.744
V-T magnitude:8.251

Catalogs and designations:
Proper Names
HD 1989HD 151211
TYCHO-2 2000TYC 7871-2490-1
USNO-A2.0USNO-A2 0450-25545386
HIPHIP 82227

→ Request more catalogs and designations from VizieR