Home     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Astro Photo     The Collection     Forum     Blog New!     FAQ     Login  
→ Adopt this star  

HD 164615


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Non-radial pulsations in the γ Doradus star HD 195068
We present high resolution spectroscopic observations of the γDoradus star HD 195068. About 230 spectra werecollected over 2 years. Time series analysis performed on radialvelocity data shows a main peak at 1.61 d-1 , a frequency notyet detected in photometry. The Hipparcos photometric 1.25d-1 frequency is easily recovered as is 1.30 d-1while the third photometric frequency, 0.97 d-1 , is onlymarginally present. The good quality of our data, which includes 196spectra collected over seven consecutive nights, shows that both the1.61 d-1 and intermediate 1.27 d-1 (mixture of1.25 and 1.30 d-1 ) frequencies are present in the lineprofile variations. Using the Fourier-Doppler Imaging (FDI) method, thevariability associated with 1.61 d-1 can be successfullymodeled by a non-radial pulsation mode ℓ=5± 1, |m|=4±1. For the intermediate frequency 1.27 d-1 we deduceℓ=4± 1, |m|=3± 1. Evidence that the star is notpulsating in the radial mode (ℓ=0) rules out a previousclassification as an RR Lyrae type star. We investigate the timevariability of FDI power spectra concluding that the observed temporalvariability of modes can be explained by a beating phenomenon betweenclosely spaced frequencies of two non-radial modes. The distribution ofthe oscillation power within the line profile indicates that there is asignificant tangential velocity component of oscillations characteristicof high radial order gravity modes which are predicted to be observed inγ Doradus type stars.

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

An analysis of the light curves of the overcontact binary system V2388 Ophiuchi
We present four seasons' (2000-2003) ground-based photometry of theshort-period contact binary V2388 Oph. The system is the brightercomponent of visual binary HIP 87655. The magnitude difference betweenthe visual companion and the eclipsing pair was estimated to be 1.19 m,1.09 m and 1.09 m in B, V and R bandpasses, respectively. The lightcurves in BVR are solved by the WD code. Combining the parameters foundby the light curve analysis with those of the radial velocity solutionwe derived the masses and radii of the star components as:M1=1.80(2) Mȯ, M2=0.34(1)Mȯ, R1=2.60(2) Rȯ,R2=1.30(1) Rȯ. The primary component appearsto be more evolved in the mass-radius, mass-luminosity planes and alsoin the HR diagram. It lies near the terminal-age main-sequence, whichagrees well with the position of deeper-contact A-type systems. Thelarge fill-out factor of 0.65 does also support this classification.

Multi-site, multi-technique survey of γ Doradus candidates. I. Spectroscopic results for 59 stars
We present the first results of a 2-year high-resolution spectroscopycampaign of 59 candidate γ Doradus stars which were mainlydiscovered from the HIPPARCOS astrometric mission. More than 60% of thestars present line profile variations which can be interpreted as due topulsation related to γ Doradus stars. For all stars we alsoderived the projected rotation velocity (up to more than 200 kms-1). The amplitude ratios 2K/Δ m for the mainHIPPARCOS frequency are in the range 35-96 kms-1,mag-1. About 50% of the candidates arepossible members of binary systems, with 20 stars being confirmedγ Doradus. At least 6 stars present composite spectra, and in allbut one case (for which only one spectrum could be obtained), the narrowcomponent shows line profile variations, pointing towards anuncomfortable situation if this narrow component originates from a shellsurrounding the star. This paper is the first of a series concerningmode identification using both photometric and spectroscopic methods forthe confirmed γ Doradus stars of the present sample.Partially based on observations obtained at the Observatoire deHaute-Provence.

A Theoretical γ Doradus Instability Strip
In this paper, we present the first theoretical γ Doradusinstability strip. We find that our model instability strip agrees verywell with the previously established, observationally based, instabilitystrip of Handler & Shobbrook. We stress, as do Guzik et al., thatthe convection zone depth plays the major role in the determination ofour instability strip. Once this depth becomes too deep or too shallow,the convection zone no longer allows for pulsational instability. Ourtheoretical γ Dor instability strip is bounded by ~6850 and 7360 Kat the red and blue edge, respectively, on the zero-age main sequenceand by ~6560 and 7000 K at the red and blue edge, respectively,approximately 2 mag more luminous. This theoretical strip, transformedto the observer's color-magnitude diagram, overlays the region wheremost of the 30 bona fide γ Dor stars are found.

A Dozen New γ Doradus Stars
We use new high-dispersion spectroscopic and precise photometricobservations to identify 12 new γ Doradus stars. Two of the 12systems are double-lined binaries that show obvious velocityvariability. Five other stars have metallic lines with compositeprofiles characterized by a narrow feature near the center of each broadcomponent. Spectrograms of the Hα line indicate that all fivestars are binaries rather than shell stars. The remaining five stars inour sample are probably single. All 12 stars are photometricallyvariable with amplitudes between 6 and 87 mmag in Johnson B and periodsbetween 0.3 and 1.2 days. Four stars are monoperiodic; the rest havebetween two and five independent periods. The variability at all periodsapproximates a sinusoid. Although many of the stars lie within theδ Scuti instability strip, none exhibit the higher frequencyvariability seen in δ Scuti stars. We have increased the sample ofknown γ Doradus stars by 40% and revised the positions of a numberof variables in the H-R diagram by accounting for duplicity. Our list of42 confirmed γ Doradus variables gives some of their properties.All are dwarfs or subgiants and lie within a well-defined region of theH-R diagram that overlaps the cool edge of the δ Scuti instabilitystrip. We compare the observed location of the γ Doradus variableswith a recently published theoretical γ Doradus instability stripand find good agreement.

The Orbit and Pulsation Periods of the γ Doradus Variable HR 6844 (V2502 Ophiuchi)
We obtained spectroscopic and photometric observations of the γDoradus variable HR 6844 (=V2502 Ophiuchi). Radial velocities show thatthis star is a single-lined binary with a period of 4.4852 days. Theprimary is an F1 V star, while the secondary is likely an M dwarf.Velocity residuals to a circular orbit have a period of 1.3071 days andan amplitude of ~3 km s-1. Three periods of light variationwere detected, 1.30702, 1.4350, and 0.62286 days. The first period isessentially identical to that found in the radial velocities and has thelargest amplitude, a peak-to-peak value of 0.067 mag in B. Thephotometric check star, 73 Oph (=HR 6795), has light variations with aperiod of 0.61439 in B. Although the star is a close visual binary, thelight variations are ascribed to the primary, making it most likely anewly discovered γ Doradus variable.

Six New γ Doradus Stars
We present high-resolution spectroscopy and precision photometry of sixnew γ Doradus stars, one of which was independently discovered byanother group. This brings the total number of confirmed γ Doradusvariables to 30. All six of these variables fall in the spectral classrange F0-F2 all but one are subgiants. The six stars have between oneand five photometric periods in the range 0.3-1.2 days. We find noevidence for higher frequency δ Scuti pulsations in any of thesesix stars. Our spectroscopic observations reveal HD 108100 to be thefirst confirmed γ Doradus variable with composite broad and narrowline profiles suggesting the presence of a circumstellar shell or disk.HD 221866 has the most asymmetric absorption lines of the six stars inthis paper and also the largest photometric amplitude. Most of the 30confirmed γ Doradus variables lie in a fairly tight region of theH-R diagram on or just above the main sequence that partially overlapsthe cool edge of the δ Scuti instability strip. However, threestars, including two of the new variables in this paper, are subgiantsthat lie well within the δ Scuti strip. Among the 30 confirmedγ Doradus variables, we find no correlation between thephotometric periods and intrinsic color, absolute magnitude, orluminosity.

The multiperiodicity of the gamma Doradus stars HD 224945 and HD 224638 as detected from a multisite campaign
We discuss new photometric data collected on the gamma Dor variables HD224945 and HD 224638. Multiperiodicity was detected in both stars,thanks to the clear spectral window of a multisite campaign thatinvolved five observatories. HD 224945 shows the shortest period amongthe gamma Dor stars, i.e., 0.3330 d. The pulsation behaviour is verydifferent: HD 224945 displays a set of frequencies spread over aninterval much larger than that of HD 224638. We clearly found evidencefor amplitude variations in the excited modes by comparing data fromdifferent years. HD 224945 and HD 224638 are among the best examples ofgamma Dor stars that show multimode pulsations, which make them veryinteresting from an asteroseismological point of view. Based onobservations partially collected at ESO-La Silla (Proposals 54.E-018 and56.E-0308).

10 New γ Doradus and δ Scuti Stars
We present high-resolution spectroscopy and precision photometry of fivenew γ Doradus and five new δ Scuti variables. The five newγ Doradus variables substantially increase the number of confirmedstars of this class. All 10 stars fall in the spectral class rangeF0-F2, but they are cleanly separated into two groups by theirluminosity and photometric periods. However, the period gap between theγ Doradus and δ Scuti stars is becoming very narrow since weconfirm that HD 155154 is a γ Doradus star with the shortestperiods reported to date (the shortest of its four periods is ~0.312days). We do not find any evidence in our sample for stars exhibitingboth δ Scuti- and γ Doradus-type pulsations.

delta Scuti and related stars: Analysis of the R00 Catalogue
We present a comprehensive analysis of the properties of the pulsatingdelta Scuti and related variables based mainly on the content of therecently published catalogue by Rodríguez et al.(\cite{retal00a}, hereafter R00). In particular, the primaryobservational properties such as visual amplitude, period and visualmagnitude and the contributions from the Hipparcos, OGLE and MACHOlong-term monitoring projects are examined. The membership of thesevariables in open clusters and multiple systems is also analyzed, withspecial attention given to the delta Scuti pulsators situated ineclipsing binary systems. The location of the delta Scuti variables inthe H-R diagram is discussed on the basis of HIPPARCOS parallaxes anduvbybeta photometry. New borders of the classical instability arepresented. In particular, the properties of the delta Scuti pulsatorswith nonsolar surface abundances (SX Phe, lambda Boo, rho Pup, delta Deland classical Am stars subgroups) are examined. The Hipparcos parallaxesshow that the available photometric uvbybeta absolute magnitudecalibrations by Crawford can be applied correctly to delta Scutivariables rotating faster than v sin i ~ 100 km s{-1} withnormal spectra. It is shown that systematic deviations exist for thephotometrically determined absolute magnitudes, which correlate with vsin i and delta m1. The photometric calibrations are found tofit the lambda Boo stars, but should not be used for the group ofevolved metallic-line A stars. The related gamma Dor variables and thepre-main-sequence delta Scuti variables are also discussed. Finally, thevariables catalogued with periods longer than 0fd 25 are examined on astar-by-star basis in order to assign them to the proper delta Scuti, RRLyrae or gamma Dor class. A search for massive, long-period delta Scutistars similar to the triple-mode variable AC And is also carried out.

Search for gamma Doradus variable stars in the Pleiades cluster
Photometric observations in the uvbybeta system of A-F type stars in thePleiades cluster have been performed in order to detect pulsatingvariable stars of gamma Doradus type in the lower part of the Cepheidinstability strip. In order to obtain more information about thebehaviour of the studied objects and to be able to distinguish betweenlong period variable and non-variable stars, two statistical methodshave been developed. Several of these stars show some type ofvariability but only two of the observed objects, H1284 and S29, can besafely classified as gamma Dor stars. Furthermore, these observationshave provided us with Strömgren and Hβ photometry,non-existing up to now for some of them, which permitted us to perform aphotometric study of the Pleiades cluster.

Gamma Doradus Stars: Defining a New Class of Pulsating Variables
In this paper we describe a new class of pulsating stars, the prototypeof which is the bright, early, F-type dwarf gamma Doradus. These starstypically have between 1 and 5 periods ranging from 0.4 to 3 days withphotometric amplitudes up to 0.1 mag in Johnson V. The mechanism forthese observed variations is high-order, low-degree, nonradial,gravity-mode pulsation.

The gamma DOR variable HR 8799: results from a multisite campaign
In this paper, we present the results of a multisite photometriccampaign devoted to the gamma Doradus type variable HR 8799. FromJohnson and Stromgren data, we were able to identify three independentfrequencies (f_1= 1.9791 cycle d^-1, f_2=1.7268 cycle d^-1 andf_3=1.6498 cycle d^-1) as well as another signal, which we are able toidentify as the coupling term between two of the frequencies(f_4=f_1-f_2=0.2479 cycle d^-1). These four frequencies are able toaccount for all of the observed variations down to the 1sigmasignificance level. We discuss another possible interpretation of thesefrequencies using a model of quasi-stochastic amplitude modulation. Inthis scenario, we are able to show that HR 8799 might be pulsating withtwo independent frequencies, one of which undergoes amplitude modulationsimilar to other gamma Dor objects. In addition, we discuss apreliminary mode identification based on the observed colour curves.Finally, 18 simultaneous, high-resolution echelle spectra were collectedon two nights and we qualitatively compare the radial velocities fromthese data with our photometry.

Radial velocities. Measurements of 2800 B2-F5 stars for HIPPARCOS
Radial velocities have been determined for a sample of 2930 B2-F5 stars,95% observed by the Hipparcos satellite in the north hemisphere and 80%without reliable radial velocity up to now. Observations were obtainedat the Observatoire de Haute Provence with a dispersion of 80Ä,mm(-1) with the aim of studying stellar and galactic dynamics.Radial velocities have been measured by correlation with templates ofthe same spectral class. The mean obtained precision is 3.0 km s(-1)with three observations. A new MK spectral classification is estimatedfor all stars. Based on observations made at the Haute ProvenceObservatory, France and on data from The Hipparcos Catalogue, ESA.Tables 4, 5 and 6 are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr or viahttp://cdsweb.u-strasbg.fr/Abstract.htm

Spectral line profile variations in the gamma Doradus variable HD 164615: non-radial pulsations versus star-spots
High-resolution spectral data of the FeII 5318 Angstroms line in thegamma Doradus star HD 164615 are presented. These show systematicchanges in the spectral lineshapes with the photometric period of 0.8133d which are modelled using either non-radial pulsations or coolstar-spots. The non-radial modes that can fit the lineshape changes havem degree of 2-4. However, only the m = 2 mode seems to be consistentwith the amplitude of the radial velocity variations measured for thisstar. The star-spot model, although it can qualitatively fit thelineshape changes, is excluded as a possible hypothesis on the basis of(1) poorer fits to the observed spectral line profiles, (2) an inabilityto account for the large changes in the spectral linewidth as a functionof phase, (3) a predicted radial velocity curve that looks qualitativelydifferent from the observed one, and (4) a predicted photometric curvethat is a factor of 5 larger than the observed light curve (and with thewrong qualitative shape). Finally, a `Doppler image' (assuming coolspots) derived from a sequence of synthetic line profiles havingnon-radial pulsations results in an image that is almost identical tothe Doppler image derived for HD 164615. These results provide strongevidence that non-radial pulsations are indeed the explanation for thevariability of HD 164615 as well as the other gamma Dor variables.

CA II H&K survey of Gamma Doradus candidates
In an investigation of the starspot hypothesis as it applies to the'slowly variable' F-type dwarfs, we spectroscopically observed eightpromising Gamma Doradus candidates to search for Ca II H&K emission. Wefound that there are no significant emission reversals in the cores ofthese resonance lines. Based on the ceiling flux calculations of the CaII K line and on calculations of the Rossby number, we conclude thatthere is no support for the presence of strong magnetic activity and thestarspot hypothesis in these objects.

The discovery of new gamma Doradus stars from the HIPPARCOS mission
We present a classification of 39 new variable stars with spectral typebetween A2 and F8 discovered by Hipparcos with the aim to find new gammaDoradus stars. We have used a multivariate classification scheme andreport the discovery of 14 new gamma Doradus variables among thisunbiased sample. Our results point out the biased nature towards hottemperatures of earlier, ground-based surveys of these variables. Thecoolest star among our sample has an effective temperature only slightlyhotter than 6 000 K. For most of the 14 new gamma Doradus stars, we areable to detect more than one period in the Hipparcos light curve. Themultiperiodicity points towards the presence of high-order g-modes. Inview of the lack of a pulsation mechanism for these objects, wedetermine their position in the HR diagram with respect to the deltaScuti stars.

Discovery and analysis of Gamma Doradus type pulsations in the F0 IV star HR 2740=QW PUP
We present multisite photometric observations of the F0 IV star HR2740=QW Pup that reveal it to be a Gamma Dor type variable pulsatingwith four frequencies: 1.0434, 0.9951, 1.1088 and 0.9019/d. These datawere obtained over a time baseline spanning from January 14 to February11, 1997. The 1.0434/d term dominates in amplitude (10 mmag) over theother three (each less than 5 mmag); the light curve comprising thesefour frequencies seems to be very stable and no residual power is leftin the power spectrum. During the analysis particular attention was paidto methodological aspects, which cannot be neglected considering theproximity of the frequencies to 1/d. Physical parameters were alsoderived for all the well-known Gamma Dor stars, confirming that thisclass is very homogenous. In the framework of the campaign, two Ap starswere also observed. The photometric differences between these rotatingvariables and HR 2740 are emphasized, corroborating the pulsationalnature of the Gamma Dor stars. It is further demonstrated that therotational splitting cannot be a suitable explanation of the observedfrequency content of HR 2740.

The Gamma DOR variable HD 164615 - Results from a multisite photometric campaign
We present the results from a multisite photometric campaign devoted tothe Gamma Dor variable HD 164615. During the campaign, data werecollected in the Johnson and Stromgren photometric systems. A firstsearch for sinusoidal periodicities yielded a three-term solution withfrequencies f1 = 1.2328, f2 = 1.0899, and f3 = 2.3501/d, and a long-termtrend f4 = 0.1301/d. The star may therefore be multiperiodic with eachfrequency related to a pulsation mode. However, a further examination ofthe curve provided evidence that the amplitude at the instant of maximumbrightness is modulated. Alternatively, HD 164615 may be a monoperiodicvariable with frequency f1 = 1.2321/d, showing amplitude modulation withfrequency f4 = 0.1301/d. The presence in the power spectra of thecoupling terms f2 = f1 - f4 and f3 = f1 + f4 - 1 supports the latterinterpretation. In the monoperiodic case the previously giveninterpretation based on a spot carried through the visible disk byrotation still holds, provided that the spot is bright and evolves on atime scale of a few days. However, similarities with other Gamma Dorstars provide indirect indication in favor of the existence of anonradial pulsation interpretation.

The gamma Doradus-type variable 9 Aurigae: results from a multi-site campaign
We present the results of a multi-longitude coordinated photometriccampaign on the gamma Dor variable 9 Aur. Three frequencies can bedetermined from the data (f_1=0.7948, f_3=0.7679, f_5=0.3429 d^-1) twoof them have already been recognized in past seasons while the thirdfrequency is reported for the first time. Analysis shows that the thirdwas `turned off' or present with an amplitude below the limits ofdetection during previous observing seasons. This evidence, togetherwith consistent amplitude changes in the two previously recognizedsignals, suggests that the stellar structure responsible for 9 Aur'svariability is extremely dynamic. Intermediate-resolution spectra andCORAVEL radial velocities collected simultaneously show variability ontime-scales commensurable with the photometry. The only sensibleexplanation appears to be a non-radial pulsation (NRP) model. However,results obtained reveal a number of features that deviate from classicalNRP behaviour. Such features are emphasized in this paper in support ofthe future development of a specific NRP model - a model which has yetto be elucidated for gamma Dor-type variables.

Complex behaviour of the δ Scuti star θ Tucanae. I. Frequencies in the light variation.
On the basis of more than 2300 new Stroemgren y and Johnson Vphotometric observations collected during 246 hours spread over 42nights at three sites in 1993, we present a frequency analysis of thelight variation of θ Tuc. 10 frequencies were found in the rangeof 15.8 to 20.28cycles/day displaying an extreme regularity. Frequenciesare situated in groups and these groups are equally spaced. Some kind ofsplitting is definitely involved. The frequencies are constant inamplitude on a short time scale. Two frequencies, 0.282 and0.142cycles/day (3.56 and 7.04days period) were found to be responsiblefor the mean light level variation of θ Tuc. Although θTuc is known as a single star, the length and shape of the mean lightlevel variation and the unusual behaviour of θ Tuc in ultravioletand infrared suggest that the δ Scuti star θ Tuc is aprimary in a binary system with a late F type companion.

γ Doradus and δ Scuti stars: cousins or twins?
γ Doradus stars are a group of slowly pulsating early F dwarfswith typical low frequencies near 1c/d. The pulsation modes are probablyg modes. These stars are slightly cooler than the typical δ Scutivariables, which pulsate with higher frequencies of typically 10c/d(mostly nonradial p modes). This paper examines the relationship betweenthe two groups of variables. Additional low-frequency variability hasbeen reported for fewer than 10% of the 300 δ Scuti starsexamined. In at least one case (1 Mon), the observational data areconsistent with an alternate interpretation in terms of a modeinteraction, f_1_-f_2_, between two p modes of higher frequency, ratherthan by the excitation of g modes. In several other stars (e.g. 4 CVn),the reported low-frequency variability may originate in the comparisonstar used. Arguments are given that for a number of stars the observedlow-frequency variations are caused by observational errors (such asinstrumental drift and transparency variations). A few δ Scutistars remain for which intrinsic γ Doradus-type variability mayalready have been discovered, although no case is well-studied. One ofthe best candidates is the star BI CMi, which is situated in the smallregion of overlap of the two groups of pulsators in theHertzsprung-Russell diagram. The star deserves further study.

Multi-longitude campaigns on gamma Doradus stars
gamma Doradus stars constitute a new class of variables (Krisciunas1995). They have spectral types near F0 V and are variable up to 0.10mag in V on time scales of 0.5 to 3 days. Krisciunas & Handler(1995) list 17 bona fide examples and candidates. The mechanism forvariability appears to be non-radial gravity mode pulsations. Thisconclusion derives from the time scale of the variability (an order ofmagnitude longer than the fundamental radial pulsation period for starsof this density), radial velocity and spectral line profile variationsthat correlate with the photometric variations (Krisciunas et al. 1995;Balona et al. 199[6]), and lack of evidence for other explanations.Starspots are proposed by some (e.g. Zerbi 199[6]) as an alternativeexplanation to non-radial g-modes, but with at least 3 periods for twoof the stars and lack of evidence for chromospheric activity, we do notsee how the starspot idea is viable. Recently Aerts & Krisciunas(199[6]) and Balona et al. (199[6]) have identified the pulsation modesof two stars, V398 Aur (= 9 Aur) and gamma Doradus itself. In thisposter we present results of multi-longitude campaigns carried out fromNovember 1994 through October 1995 on gamma Dor, V398 Aur, HD 164615, BS8799, HD 224638, and HD 224945. Multi-longitude campaigns are necessaryfor the proper identification of the frequencies of variation, owing toaliasing that results from observations, at a single site, of stars withperiods on the order of one day. Aerts C., Krisciunas K., 199[6], MNRAS,in press Balona L. A. et al. 199[6], MUSICOS conference proceedings, inpress Krisciunas K., 1995, ``What is known and not known about gammaDoradus stars,'' Delta Scuti Star Newsletter, Issue 9, 17 Krisciunas K.et al. \ 1995, MNRAS, 273, 662 Krisciunas K., Handler G., 1995, IBVS4195 Zerbi F. M., 199[6], Vienna meeting on Stellar Surface Structure,IAU Symposium 176, in press

9 Aurigae: strong evidence for non-radial pulsations
We present further photometric observations of the unusual F0 V star 9Aurigae and present evidence that this star's radial velocity,spectroscopic line widths and line depths are also variable with thesame frequencies as the photometric data (f_1~=0.795 and f_2~=0.345d^-1). The phases of these sinusoids are stable over time-scales oflonger than one year, though the amplitudes can vary, making theprediction of photometric behaviour impossible. Given that a variety ofother explanations have already been discounted (e.g. interactions witha close companion, the existence of a lumpy, orbiting ring of dust, orstar spots) and that these variations occur on time-scales an order ofmagnitude slower than the fundamental radial pulsation period, we havevery strong evidence that 9 Aurigae exhibits non-radial g-modepulsations. Since the power spectrum of the radial velocity data showsfrequency f_2 but does not clearly show f_1, the present data suggestthat f_2 is associated with a low-degree spherical harmonic L=1 or 2),while f_1 is associated with a higher degree harmonic. 9 Aurigae, alongwith such stars as gamma Doradus, HD 224638, HD 224945, and HD 164615,appears to constitute a new class of pulsating variables. These starsare to be found at or beyond the cool edge of the Cepheid instabilitystrip in the HR Diagram. Prior to this, only much hotter stars have beenshown to exhibit non-radial g-modes.

uvby beta Photometry of Stars of "Astrophysical Interest"
Not Available

Young Pulsating Stars in the Bohm-Vitense Decrement
Not Available

A List of Variable Stars Similar to gamma Dor
Not Available

A long period early F-type variable: HR8799
Not Available

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:へびつかい座
Right ascension:18h01m33.20s
Declination:+11°17'08.7"
Apparent magnitude:7.019
Distance:69.638 parsecs
Proper motion RA:17.5
Proper motion Dec:0.2
B-T magnitude:7.437
V-T magnitude:7.054

Catalogs and designations:
Proper Names
HD 1989HD 164615
TYCHO-2 2000TYC 1016-413-1
USNO-A2.0USNO-A2 0975-10234557
HIPHIP 88272

→ Request more catalogs and designations from VizieR