Home     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Astro Photo     The Collection     Forum     Blog New!     FAQ     Login  
→ Adopt this star  

HD 208998


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Manganese trends in a sample of thin and thick disk stars. The origin of Mn
Context: Manganese is an iron-peak element and although thenucleosynthesis path that leads to its formation is fairly wellunderstood, it remains unclear which objects, SN II and/or SN Ia, thatcontribute the majority of Mn to the interstellar medium. It alsoremains unclear to which extent the supernovae Mn yields depend on themetallicity of the progenitor star or not. Aims: By using a wellstudied and well defined sample of 95 dwarf stars we aim at furtherconstraining the formation site(s) of Mn. Methods: We derive Mnabundances through spectral synthesis of four Mn I lines at 539.4,549.2, 601.3, and 601.6 nm. Stellar parameters and data for oxygen aretaken from Bensby et al. (2003, 2004, 2005). Results: Whencomparing our Mn abundances with O abundances for the same stars we findthat the abundance trends in the stars with kinematics typical of thethick disk can be explained by metallicity dependent yields from SN II.We go on and combine our data for dwarf stars in the disks with data fordwarf and giant stars in the metal-poor thick disk and halo from theliterature. We find that dwarf and giant stars show the same trends,which indicates that neither non-LTE nor evolutionary effects are amajor concern for Mn. Furthermore, the [Mn/O] vs. [O/H] trend in thehalo is flat. Conclusions: We conclude that the simplestinterpretation of our data is that Mn is most likely produced in SN IIand that the Mn yields for such SNae must be metallicity dependent.Contribution from SN Ia in the metal-rich thin disk can not, however, beexcluded.Based on observations collected at the Nordic Optical Telescope on LaPalma, Spain, and at the European Southern Observatory on La Silla,Chile, Proposals # 65.L-0019(B) and 67.B-0108(B). The full versions ofTables 4 and 5 are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?/A+A/467/665

The abundance distribution of stars with planets
We present the results of a uniform, high-precision spectroscopicmetallicity study of 136 G-type stars from the Anglo-Australian PlanetSearch, 20 of which are known to harbour extrasolar planets (as at 2005July). Abundances in Fe, C, Na, Al, Si, Ca, Ti and Ni are presented,along with Strömgen photometric metallicities. This study is one ofseveral recent studies examining the metallicities of a sample ofplanet-host and non-planet-host stars that were obtained from a singlesample, and analysed in an identical manner, providing an unbiasedestimate of the metallicity trends for planet-bearing stars. We findthat non-parametric tests of the distribution of metallicities forplanet-host and non-planet-host stars are significantly different at alevel of 99.4 per cent confidence. We confirm the previously observedtrend for planet-host stars to have higher mean metallicities thannon-planet-host stars, with a mean metallicity for planet-host stars of[Fe/H] = 0.06 +/- 0.03dex compared with [Fe/H] = -0.09 +/- 0.01dex fornon-host-stars in our sample. This enrichment is also seen in the otherelements studied. Based on our findings, we suggest that this observedenhancement is more likely a relic of the original gas cloud from whichthe star and its planets formed, rather than being due to `pollution' ofthe stellar photosphere.

Contributions to the Nearby Stars (NStars) Project: Spectroscopy of Stars Earlier than M0 within 40 pc-The Southern Sample
We are obtaining spectra, spectral types, and basic physical parametersfor the nearly 3600 dwarf and giant stars earlier than M0 in theHipparcos catalog within 40 pc of the Sun. Here we report on resultsfor 1676 stars in the southern hemisphere observed at Cerro TololoInter-American Observatory and Steward Observatory. These resultsinclude new, precise, homogeneous spectral types, basic physicalparameters (including the effective temperature, surface gravity, andmetallicity [M/H]), and measures of the chromospheric activity of ourprogram stars. We include notes on astrophysically interesting stars inthis sample, the metallicity distribution of the solar neighborhood, anda table of solar analogs. We also demonstrate that the bimodal nature ofthe distribution of the chromospheric activity parameterlogR'HK depends strongly on the metallicity, andwe explore the nature of the ``low-metallicity'' chromosphericallyactive K-type dwarfs.

Effective temperature scale and bolometric corrections from 2MASS photometry
We present a method to determine effective temperatures, angularsemi-diameters and bolometric corrections for population I and II FGKtype stars based on V and 2MASS IR photometry. Accurate calibration isaccomplished by using a sample of solar analogues, whose averagetemperature is assumed to be equal to the solar effective temperature of5777 K. By taking into account all possible sources of error we estimateassociated uncertainties to better than 1% in effective temperature andin the range 1.0-2.5% in angular semi-diameter for unreddened stars.Comparison of our new temperatures with other determinations extractedfrom the literature indicates, in general, remarkably good agreement.These results suggest that the effective temperaure scale of FGK starsis currently established with an accuracy better than 0.5%-1%. Theapplication of the method to a sample of 10 999 dwarfs in the Hipparcoscatalogue allows us to define temperature and bolometric correction (Kband) calibrations as a function of (V-K), [m/H] and log g. Bolometriccorrections in the V and K bands as a function of T_eff, [m/H] and log gare also given. We provide effective temperatures, angularsemi-diameters, radii and bolometric corrections in the V and K bandsfor the 10 999 FGK stars in our sample with the correspondinguncertainties.

The origin and chemical evolution of carbon in the Galactic thin and thick discs*
In order to trace the origin and evolution of carbon in the Galacticdisc, we have determined carbon abundances in 51 nearby F and G dwarfstars. The sample is divided into two kinematically distinct subsampleswith 35 and 16 stars that are representative of the Galactic thin andthick discs, respectively. The analysis is based on spectral synthesisof the forbidden [CI] line at 872.7nm using spectra of very highresolution (R~ 220000) and high signal-to-noise ratio (S/N >~ 300)that were obtained with the Coudé Echelle Spectrograph (CES)spectrograph by the European Southern Observatory (ESO) 3.6-m telescopeat La Silla in Chile. We find that [C/Fe] versus [Fe/H] trends for thethin and thick discs are totally merged and flat for subsolarmetallicities. The thin disc that extends to higher metallicities thanthe thick disc shows a shallow decline in [C/Fe] from [Fe/H]~ 0 and upto [Fe/H]~+0.4. The [C/O] versus [O/H] trends are well separated betweenthe two discs (due to differences in the oxygen abundances) and bear agreat resemblance to the [Fe/O] versus [O/H] trends. Our interpretationof our abundance trends is that the sources that are responsible for thecarbon enrichment in the Galactic thin and thick discs have operated ona time-scale very similar to those that are responsible for the Fe and Yenrichment [i.e. SNIa and asymptotic giant branch (AGB) stars,respectively]. We further note that there exist other observational datain the literature that favour massive stars as the main sources forcarbon. In order to match our carbon trends, we believe that the carbonyields from massive stars then must be very dependent on metallicity forthe C, Fe and Y trends to be so finely tuned in the two discpopulations. Such metallicity-dependent yields are no longer supportedby the new stellar models in the recent literature. For the Galaxy, wehence conclude that the carbon enrichment at metallicities typical ofthe disc is mainly due to low- and intermediate-mass stars, whilemassive stars are still the main carbon contributor at low metallicities(halo and metal-poor thick disc).

Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs
We present a uniform catalog of stellar properties for 1040 nearby F, G,and K stars that have been observed by the Keck, Lick, and AAT planetsearch programs. Fitting observed echelle spectra with synthetic spectrayielded effective temperature, surface gravity, metallicity, projectedrotational velocity, and abundances of the elements Na, Si, Ti, Fe, andNi, for every star in the catalog. Combining V-band photometry andHipparcos parallaxes with a bolometric correction based on thespectroscopic results yielded stellar luminosity, radius, and mass.Interpolating Yonsei-Yale isochrones to the luminosity, effectivetemperature, metallicity, and α-element enhancement of each staryielded a theoretical mass, radius, gravity, and age range for moststars in the catalog. Automated tools provide uniform results and makeanalysis of such a large sample practical. Our analysis method differsfrom traditional abundance analyses in that we fit the observed spectrumdirectly, rather than trying to match equivalent widths, and wedetermine effective temperature and surface gravity from the spectrumitself, rather than adopting values based on measured photometry orparallax. As part of our analysis, we determined a new relationshipbetween macroturbulence and effective temperature on the main sequence.Detailed error analysis revealed small systematic offsets with respectto the Sun and spurious abundance trends as a function of effectivetemperature that would be inobvious in smaller samples. We attempted toremove these errors by applying empirical corrections, achieving aprecision per spectrum of 44 K in effective temperature, 0.03 dex inmetallicity, 0.06 dex in the logarithm of gravity, and 0.5 kms-1 in projected rotational velocity. Comparisons withprevious studies show only small discrepancies. Our spectroscopicallydetermined masses have a median fractional precision of 15%, but theyare systematically 10% higher than masses obtained by interpolatingisochrones. Our spectroscopic radii have a median fractional precisionof 3%. Our ages from isochrones have a precision that variesdramatically with location in the Hertzsprung-Russell diagram. We planto extend the catalog by applying our automated analysis technique toother large stellar samples.

Abundance trends in kinematical groups of the Milky Way's disk
We have compiled a large catalogue of metallicities and abundance ratiosfrom the literature in order to investigate abundance trends of severalalpha and iron peak elements in the thin disk and the thick disk of theGalaxy. The catalogue includes 743 stars with abundances of Fe, O, Mg,Ca, Ti, Si, Na, Ni and Al in the metallicity range -1.30 < [Fe/H]< +0.50. We have checked that systematic differences betweenabundances measured in the different studies were lower than randomerrors before combining them. Accurate distances and proper motions fromHipparcos and radial velocities from several sources have been retreivedfor 639 stars and their velocities (U, V, W) and galactic orbits havebeen computed. Ages of 322 stars have been estimated with a Bayesianmethod of isochrone fitting. Two samples kinematically representative ofthe thin and thick disks have been selected, taking into account theHercules stream which is intermediate in kinematics, but with a probabledynamical origin. Our results show that the two disks are chemicallywell separated, they overlap greatly in metallicity and both showparallel decreasing alpha elements with increasing metallicity, in theinterval -0.80 < [Fe/H] < -0.30. The Mg enhancement with respectto Fe of the thick disk is measured to be 0.14 dex. An even largerenhancement is observed for Al. The thick disk is clearly older than thethin disk with tentative evidence of an AMR over 2-3 Gyr and a hiatus instar formation before the formation of the thin disk. We do not observea vertical gradient in the metallicity of the thick disk. The Herculesstream has properties similar to that of the thin disk, with a widerrange of metallicity. Metal-rich stars assigned to the thick disk andsuper-metal-rich stars assigned to the thin disk appear as outliers inall their properties.

The Planet-Metallicity Correlation
We have recently carried out spectral synthesis modeling to determineTeff, logg, vsini, and [Fe/H] for 1040 FGK-type stars on theKeck, Lick, and Anglo-Australian Telescope planet search programs. Thisis the first time that a single, uniform spectroscopic analysis has beenmade for every star on a large Doppler planet search survey. We identifya subset of 850 stars that have Doppler observations sufficient todetect uniformly all planets with radial velocity semiamplitudes K>30m s-1 and orbital periods shorter than 4 yr. From this subsetof stars, we determine that fewer than 3% of stars with-0.5<[Fe/H]<0.0 have Doppler-detected planets. Above solarmetallicity, there is a smooth and rapid rise in the fraction of starswith planets. At [Fe/H]>+0.3 dex, 25% of observed stars have detectedgas giant planets. A power-law fit to these data relates the formationprobability for gas giant planets to the square of the number of metalatoms. High stellar metallicity also appears to be correlated with thepresence of multiple-planet systems and with the total detected planetmass. This data set was examined to better understand the origin of highmetallicity in stars with planets. None of the expected fossilsignatures of accretion are observed in stars with planets relative tothe general sample: (1) metallicity does not appear to increase as themass of the convective envelopes decreases, (2) subgiants with planetsdo not show dilution of metallicity, (3) no abundance variations for Na,Si, Ti, or Ni are found as a function of condensation temperature, and(4) no correlations between metallicity and orbital period oreccentricity could be identified. We conclude that stars with extrasolarplanets do not have an accretion signature that distinguishes them fromother stars; more likely, they are simply born in higher metallicitymolecular clouds.Based on observations obtained at Lick and Keck Observatories, operatedby the University of California, and the Anglo-Australian Observatories.

α-, r-, and s-process element trends in the Galactic thin and thick disks
From a detailed elemental abundance analysis of 102 F and G dwarf starswe present abundance trends in the Galactic thin and thick disks for 14elements (O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Zn, Y, Ba, and Eu).Stellar parameters and elemental abundances (except for Y, Ba and Eu)for 66 of the 102 stars were presented in our previous studies (Bensbyet al. [CITE], A&A, 410, 527, [CITE], A&A, 415, 155). The 36stars that are new in this study extend and confirm our previous resultsand allow us to draw further conclusions regarding abundance trends. Thes-process elements Y and Ba, and the r-element Eu have also beenconsidered here for the whole sample for the first time. With this newlarger sample we now have the following results: 1) smooth and distinctabundance trends that for the thin and thick disks are clearlyseparated; 2) the α-element trends for the thick disk show typicalsignatures from the enrichment of SN Ia; 3) the thick disk stellarsample is in the mean older than the thin disk stellar sample; 4) thethick disk abundance trends are invariant with galactocentric radii(R_m); 5) the thick disk abundance trends appear to be invariant withvertical distance (Z_max) from the Galactic plane. Adding furtherevidence from the literaure we argue that a merger/interacting scenariowith a companion galaxy to produce a kinematical heating of the stars(that make up today's thick disk) in a pre-existing old thin disk is themost likely formation scenario for the Galactic thick disk. The 102stars have -1 ≲ [Fe/H] ≲ +0.4 and are all in the solarneighbourhood. Based on their kinematics they have been divided into athin disk sample and a thick disk sample consisting of 60 and 38 stars,respectively. The remaining 4 stars have kinematics that make themkinematically intermediate to the two disks. Their chemical abundancesalso place them in between the two disks. Which of the two diskpopulations these 4 stars belong to, or if they form a distinctpopulation of their own, can at the moment not be settled. The 66 starsfrom our previous studies were observed with the FEROS spectrograph onthe ESO 1.5-m telescope and the CES spectrograph on the ESO 3.6-mtelescope. Of the 36 new stars presented here 30 were observed with theSOFIN spectrograph on the Nordic Optical Telescope on La Palma, 3 withthe UVES spectrograph on VLT/UT2, and 3 with the FEROS spectrograph onthe ESO 1.5-m telescope. All spectra have high signal-to-noise ratios(typically S/N≳ 250) and high resolution (R˜ 80 000, 45 000,and 110 000 for the SOFIN, FEROS, and UVES spectra, respectively).Based on observations collected at the Nordic Optical Telescope on LaPalma, Spain, and at the European Southern Observatories on La Silla andParanal, Chile, Proposals # 65.L-0019(B), 67.B-0108(B), 69.B-0277. FullTables [see full text], [see full text] and [see full text] are onlyavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/433/185

Stellar Chemical Signatures and Hierarchical Galaxy Formation
To compare the chemistries of stars in the Milky Way dwarf spheroidal(dSph) satellite galaxies with stars in the Galaxy, we have compiled alarge sample of Galactic stellar abundances from the literature. Whenkinematic information is available, we have assigned the stars tostandard Galactic components through Bayesian classification based onGaussian velocity ellipsoids. As found in previous studies, the[α/Fe] ratios of most stars in the dSph galaxies are generallylower than similar metallicity Galactic stars in this extended sample.Our kinematically selected stars confirm this for the Galactic halo,thin-disk, and thick-disk components. There is marginal overlap in thelow [α/Fe] ratios between dSph stars and Galactic halo stars onextreme retrograde orbits (V<-420 km s-1), but this is notsupported by other element ratios. Other element ratios compared in thispaper include r- and s-process abundances, where we find a significantoffset in the [Y/Fe] ratios, which results in a large overabundance in[Ba/Y] in most dSph stars compared with Galactic stars. Thus, thechemical signatures of most of the dSph stars are distinct from thestars in each of the kinematic components of the Galaxy. This resultrules out continuous merging of low-mass galaxies similar to these dSphsatellites during the formation of the Galaxy. However, we do not ruleout very early merging of low-mass dwarf galaxies, since up to one-halfof the most metal-poor stars ([Fe/H]<=-1.8) have chemistries that arein fair agreement with Galactic halo stars. We also do not rule outmerging with higher mass galaxies, although we note that the LMC and theremnants of the Sgr dwarf galaxy are also chemically distinct from themajority of the Galactic halo stars. Formation of the Galaxy's thickdisk by heating of an old thin disk during a merger is also not ruledout; however, the Galaxy's thick disk itself cannot be comprised of theremnants from a low-mass (dSph) dwarf galaxy, nor of a high-mass dwarfgalaxy like the LMC or Sgr, because of differences in chemistry.The new and independent environments offered by the dSph galaxies alsoallow us to examine fundamental assumptions related to thenucleosynthesis of the elements. The metal-poor stars ([Fe/H]<=-1.8)in the dSph galaxies appear to have lower [Ca/Fe] and [Ti/Fe] than[Mg/Fe] ratios, unlike similar metallicity stars in the Galaxy.Predictions from the α-process (α-rich freeze-out) would beconsistent with this result if there have been a lack of hypernovae indSph galaxies. The α-process could also be responsible for thevery low Y abundances in the metal-poor stars in dSph's; since [La/Eu](and possibly [Ba/Eu]) are consistent with pure r-process results, thelow [Y/Eu] suggests a separate r-process site for this light(first-peak) r-process element. We also discuss SNe II rates and yieldsas other alternatives, however. In stars with higher metallicities([Fe/H]>=-1.8), contributions from the s-process are expected; [(Y,La, and Ba)/Eu] all rise as expected, and yet [Ba/Y] is still muchhigher in the dSph stars than similar metallicity Galactic stars. Thisresult is consistent with s-process contributions from lower metallicityAGB stars in dSph galaxies, and is in good agreement with the slowerchemical evolution expected in the low-mass dSph galaxies relative tothe Galaxy, such that the build-up of metals occurs over much longertimescales. Future investigations of nucleosynthetic constraints (aswell as galaxy formation and evolution) will require an examination ofmany stars within individual dwarf galaxies.Finally, the Na-Ni trend reported in 1997 by Nissen & Schuster isconfirmed in Galactic halo stars, but we discuss this in terms of thegeneral nucleosynthesis of neutron-rich elements. We do not confirm thatthe Na-Ni trend is related to the accretion of dSph galaxies in theGalactic halo.

Chemical enrichment and star formation in the Milky Way disk. III. Chemodynamical constraints
In this paper, we investigate some chemokinematical properties of theMilky Way disk, by using a sample composed by 424 late-type dwarfs. Weshow that the velocity dispersion of a stellar group correlates with theage of this group, according to a law proportional to t0.26,where t is the age of the stellar group. The temporal evolution of thevertex deviation is considered in detail. It is shown that the vertexdeviation does not seem to depend strongly on the age of the stellargroup. Previous studies in the literature seem to not have found it dueto the use of statistical ages for stellar groups, rather thanindividual ages. The possibility to use the orbital parameters of a starto derive information about its birthplace is investigated, and we showthat the mean galactocentric radius is likely to be the most reliablestellar birthplace indicator. However, this information cannot bepresently used to derive radial evolutionary constraints, due to anintrinsic bias present in all samples constructed from nearby stars. Anextensive discussion of the secular and stochastic heating mechanismscommonly invoked to explain the age-velocity dispersion relation ispresented. We suggest that the age-velocity dispersion relation couldreflect the gradual decrease in the turbulent velocity dispersion fromwhich disk stars form, a suggestion originally made by Tinsley &Larson (\cite{tinsley}, ApJ, 221, 554) and supported by several morerecent disk evolution calculations. A test to distinguish between thetwo types of models using high-redshift galaxies is proposed.Full Table 1 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/423/517

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Oxygen trends in the Galactic thin and thick disks
We present oxygen abundances for 72 F and G dwarf stars in the solarneighbourhood. Using the kinematics of the stars we divide them into twosub-samples with space velocities that are typical for the thick andthin disks, respectively. The metallicities of the stars range from[Fe/H] ≈ -0.9 to +0.4 and we use the derived oxygen abundances of thestars to: (1) perform a differential study of the oxygen trends in thethin and the thick disk; (2) to follow the trend of oxygen in the thindisk to the highest metallicities. We analyze the forbidden oxygen linesat 6300 Å and 6363 Å as well as the (NLTE afflicted) tripletlines around 7774 Å. For the forbidden line at 6300 Å wehave spectra of very high S/N (>400) and resolution (R ≳ 215000). This has enabled a very accurate modeling of the oxygen line andthe blending Ni lines. The high internal accuracy in our determinationof the oxygen abundances from this line is reflected in the very tighttrends we find for oxygen relative to iron. From these abundances we areable to draw the following major conclusions: (i) That the [O/Fe] trendat super-solar [Fe/H] continues downward which is in concordance withmodels of Galactic chemical evolution. This is not seen in previousstudies as it has not been possible to take the blending Ni lines in theforbidden oxygen line at 6300 Å properly into account; (ii) Thatthe oxygen trends in the thin and the thick disks are distinctlydifferent. This confirms and extends previous studies of the otherα-elements; (iii) That oxygen does not follow Mg at super-solarmetallicities; (iv) We also provide an empirical NLTE correction for theinfrared O I triplet that could be used for dwarf star spectra with aS/N such that only the triplet lines can be analyzed well, e.g. stars atlarge distances; (v) Finally, we find that Gratton et al. (1999)overestimate the NLTE corrections for the permitted oxygen triplet linesat ˜7774 Å for the parameter space that our stars span.Based on observations collected at the European Southern Observatory, LaSilla and Paranal, Chile, Proposals #65.L-0019, 67.B-0108, and69.B-0277.The full Table 4 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?/A+A/415/155

Oxygen line formation in late-F through early-K disk/halo stars. Infrared O I triplet and [O I] lines
In order to investigate the formation of O I 7771-5 and [O I] 6300/6363lines, extensive non-LTE calculations for neutral atomic oxygen werecarried out for wide ranges of model atmosphere parameters, which areapplicable to early-K through late-F halo/disk stars of variousevolutionary stages.The formation of the triplet O I lines was found to be well described bythe classical two-level-atom scattering model, and the non-LTEcorrection is practically determined by the parameters of theline-transition itself without any significant relevance to the detailsof the oxygen atomic model. This simplifies the problem in the sensethat the non-LTE abundance correction is essentially determined only bythe line-strength (Wlambda ), if the atmospheric parametersof Teff, log g, and xi are given, without any explicitdependence of the metallicity; thus allowing a useful analytical formulawith tabulated numerical coefficients. On the other hand, ourcalculations lead to the robust conclusion that LTE is totally valid forthe forbidden [O I] lines.An extensive reanalysis of published equivalent-width data of O I 7771-5and [O I] 6300/6363 taken from various literature resulted in theconclusion that, while a reasonable consistency of O I and [O I]abundances was observed for disk stars (-1 <~ [Fe/H] <~ 0), theexistence of a systematic abundance discrepancy was confirmed between OI and [O I] lines in conspicuously metal-poor halo stars (-3 <~[Fe/H] <~ -1) without being removed by our non-LTE corrections, i.e.,the former being larger by ~ 0.3 dex at -3 <~ [Fe/H] <~ -2.An inspection of the parameter-dependence of this discordance indicatesthat the extent of the discrepancy tends to be comparatively lessenedfor higher Teff/log g stars, suggesting the preference ofdwarf (or subgiant) stars for studying the oxygen abundances ofmetal-poor stars.Tables 2, 5, and 7 are only available in electronic form, at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/402/343 and Table\ref{tab3} is only available in electronic form athttp://www.edpsciences.org

Statistical cataloging of archival data for luminosity class IV-V stars. II. The epoch 2001 [Fe/H] catalog
This paper describes the derivation of an updated statistical catalog ofmetallicities. The stars for which those metallicities apply are ofspectral types F, G, and K, and are on or near the main sequence. Theinput data for the catalog are values of [Fe/H] published before 2002February and derived from lines of weak and moderate strength. Theanalyses used to derive the data have been based on one-dimensional LTEmodel atmospheres. Initial adjustments which are applied to the datainclude corrections to a uniform temperature scale which is given in acompanion paper (see Taylor \cite{t02}). After correction, the data aresubjected to a statistical analysis. For each of 941 stars considered,the results of that analysis include a mean value of [Fe/H], an rmserror, an associated number of degrees of freedom, and one or moreidentification numbers for source papers. The catalog of these resultssupersedes an earlier version given by Taylor (\cite{t94b}).Catalog is only available in electronic form at the CDS via anonymousftp cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/398/731

Statistical cataloging of archival data for luminosity class IV-V stars. I. The epoch 2001 temperature catalog
This paper is one of a pair in which temperatures and metallicitycatalogs for class IV-V stars are considered. The temperature catalogdescribed here is derived from a calibration based on stellar angulardiameters. If published calibrations of this kind are compared by usingcolor-index transformations, temperature-dependent differences among thecalibrations are commonly found. However, such differences are minimizedif attention is restricted to calibrations based on Johnson V-K. Acalibration of this sort from Di Benedetto (\cite{dib98}) is thereforetested and adopted. That calibration is then applied to spectroscopicand photometric data, with the latter predominating. Cousins R-Iphotometry receives special attention because of its high precision andlow metallicity sensitivity. Testing of temperatures derived from thecalibration suggests that their accuracy and precision are satisfactory,though further testing will be warranted as new results appear. Thesetemperatures appear in the catalog as values of theta equiv5040/T(effective). Most of these entries are accompanied by measured orderived values of Cousins R-I. Entries are given for 951 stars.Catalog is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/398/721

Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog
We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.

Extrasolar planets around HD 196050, HD 216437 and HD 160691
We report precise Doppler measurements of the stars HD 216437, HD 196050and HD 160691 obtained with the Anglo-Australian Telescope using theUCLES spectrometer together with an iodine cell as part of theAnglo-Australian Planet Search. Our measurements reveal periodicKeplerian velocity variations that we interpret as evidence for planetsin orbit around these solar type stars. HD 216437 has a period of 1294+/- 250 d, a semi-amplitude of 38 +/- 3 m s-1 and aneccentricity of 0.33 +/- 0.09. The minimum (M sin i) mass of thecompanion is 2.1 +/- 0.3 MJUP and the semi-major axis is 2.4+/- 0.5 au. HD 196050 has a period of 1300 +/- 230 d, a semi-amplitudeof 49 +/- 8 m s-1 and an eccentricity of 0.19 +/- 0.09. Theminimum mass of the companion is 2.8 +/- 0.5 MJUP and thesemi-major axis is 2.4 +/- 0.5 au. We also report further observationsof the metal-rich planet bearing star HD 160691. Our new solutionconfirms the previously reported planet and shows a trend indicating asecond, longer-period companion. These discoveries add to the growingnumbers of mildly eccentric, long-period extrasolar planets aroundmetal-rich Sun-like stars.

HIPPARCOS age-metallicity relation of the solar neighbourhood disc stars
We derive age-metallicity relations (AMRs) and orbital parameters forthe 1658 solar neighbourhood stars to which accurate distances aremeasured by the HIPPARCOS satellite. The sample stars comprise 1382 thindisc stars, 229 thick disc stars, and 47 halo stars according to theirorbital parameters. We find a considerable scatter for thin disc AMRalong the one-zone Galactic chemical evolution (GCE) model. Orbits andmetallicities of thin disc stars show now clear relation each other. Thescatter along the AMR exists even if the stars with the same orbits areselected. We examine simple extension of one-zone GCE models whichaccount for inhomogeneity in the effective yield and inhomogeneous starformation rate in the Galaxy. Both extensions of the one-zone GCE modelcannot account for the scatter in age - [Fe/H] - [Ca/Fe] relationsimultaneously. We conclude, therefore, that the scatter along the thindisc AMR is an essential feature in the formation and evolution of theGalaxy. The AMR for thick disc stars shows that the star formationterminated 8 Gyr ago in the thick disc. As already reported by Grattonet al. (\cite{Gratton_et.al.2000}) and Prochaska et al.(\cite{Prochaska_et.al.2000}), thick disc stars are more Ca-rich thanthin disc stars with the same [Fe/H]. We find that thick disc stars showa vertical abundance gradient. These three facts, the AMR, verticalgradient, and [Ca/Fe]-[Fe/H] relation, support monolithic collapseand/or accretion of satellite dwarf galaxies as likely thick discformation scenarios. Tables 2 and 3 are only available in electronicform at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)or via http:/ /cdsweb.u-strasbg.fr/ cgi-bin/qcat?J/ A+A/394/927

Revised Coordinates and Proper Motions of the Stars in the Luyten Half-Second Catalog
We present refined coordinates and proper-motion data for the highproper-motion (HPM) stars in the Luyten Half-Second (LHS) catalog. Thepositional uncertainty in the original Luyten catalog is typicallygreater than 10" and is often greater than 30". We have used the digitalscans of the POSS I and POSS II plates to derive more accurate positionsand proper motions of the objects. Out of the 4470 candidates in the LHScatalog, 4323 objects were manually reidentified in the POSS I and POSSII scans. A small fraction of the stars were not found because of thelack of finder charts and digitized POSS II scans. The uncertainties inthe revised positions are typically ~2" but can be as high as ~8" in afew cases, which is a large improvement over the original data.Cross-correlation with the Tycho-2 and Hipparcos catalogs yielded 819candidates (with mR<~12). For these brighter sources, theposition and proper-motion data were replaced with the more accurateTycho-2/Hipparcos data. In total, we have revised proper-motionmeasurements and coordinates for 4040 stars and revised coordinates for4330 stars. The electronic version of the paper5 contains the updated information on all 4470stars in the LHS catalog.

Metallicity effects on the chromospheric activity-age relation for late-type dwarfs
We show that there is a relationship between the age excess, defined asthe difference between the stellar isochrone and chromospheric ages, andthe metallicity as measured by the index [Fe/H] for late-type dwarfs.The chromospheric age tends to be lower than the isochrone age formetal-poor stars, and the opposite occurs for metal-rich objects. Wesuggest that this could be an effect of neglecting the metallicitydependence of the calibrated chromospheric emission-age relation. Wepropose a correction to account for this dependence. We also investigatethe metallicity distributions of these stars, and show that there aredistinct trends according to the chromospheric activity level. Inactivestars have a metallicity distribution which resembles the metallicitydistribution of solar neighbourhood stars, while active stars appear tobe concentrated in an activity strip on the logR'_HKx[Fe/H] diagram. Weprovide some explanations for these trends, and show that thechromospheric emission-age relation probably has different slopes on thetwo sides of the Vaughan-Preston gap.

Evolutionary Oddities in Old Disk Population Clusters
With a luminosity zero point fixed by the kinematics of old disksuperclusters (HR 1614, t = 6 Gyr, [Fe/H] = +0.1 dex) and groups(Arcturus, t = 14 Gyr, [Fe/H] = -0.65 dex), the luminosities and colorsof evolved old disk stars, especially red horizontal branch (RHB), earlyasymptotic branch [AGB(1)], thermally pulsing asymptotic giant branch[AGB(2)], and sdOB stars in old disk clusters (NGC 6791, 47 Tuc, M71,M67, Mel 66, NGC 2420, NGC 2204, and NGC 2443) are discussed. (1) TheRHB stars in the old disk all have M_V = +0.7 +/- 0.1 (M_K = -1.3 +/-0.1) mag. (2) Large-amplitude red variables (LARVs) with quasi-stableperiods and light curves are old disk stars on AGB(2). (3) AGB(1)objects include CH stars and semiregular (SRa) variables. (4) Thepopulous and overabundant cluster NGC 6791 may be the only disk clusterwith sdOB stars, populating the lower portion of the bifurcated extendedhorizontal branch that is usual in most ``blue tailed'' and high-densityhalo clusters. (5) Post-red giant branch (RGB) stars in old diskclusters show a B - V (b - y) defect when compared with RGB stars,possibly because of a change in the character of the atmospheres. (6) Ifthe bulk of the LARVs are pulsating in the fundamental mode, R Vir (P =145 days) is possibly a first-overtone pulsator. (7) The overabundantold disk clusters are within the solar circle, with Liller 1 being atthe Galactic center. (8) Several probable RHB stars at the southGalactic pole are identified. (9) The period-age relation, combined withthe known spatial distribution of Galactic LARVs, leads to a relationbetween age and scale height of distribution that monotonicallyincreases with age, leaving no obvious reason for a bifurcation of thepopulation.

Kinematics and Metallicity of Stars in the Solar Region
Several samples of nearby stars with the most accurate astrometric andphotometric parameters are searched for clues to their evolutionaryhistory. The main samples are (1) the main-sequence stars with b - ybetween 0.29 and 0.59 mag (F3 to K1) in the Yale parallax catalog, (2) agroup of high-velocity subgiants studied spectroscopically by Ryan &Lambert, and (3) high-velocity main-sequence stars in the extensiveinvestigation by Norris, Bessel, & Pickles. The major conclusionsare as follows: (1) The oldest stars (halo), t >= 10-12 Gyr, haveV-velocities (in the direction of Galactic rotation and referred to theSun) in the range from about -50 to -800 km s^-1 and have aheavy-element abundance [Fe/H] of less than about -0.8 dex. The agerange of these objects depends on our knowledge of globular clusterages, but if age is correlated with V-velocity, the youngest may be M22and M28 (V ~ -50 km s^-1) and the oldest NGC 3201 (V ~ -500 km s^-1) andassorted field stars. (2) The old disk population covers the large agerange from about 2 Gyr (Hyades, NGC 752) to 10 or 12 Gyr (Arcturusgroup, 47 Tuc), but the lag (V) velocity is restricted to less thanabout 120 km s^-1 and [Fe/H] >= -0.8 or -0.9 dex. The [Fe/H] ~ -0.8dex division between halo and old disk, near t ~ 10-12 Gyr, is marked bya change in the character of the CN index (C_m) and of the blanketingparameter K of the DDO photometry. (3) The young disk population, t <2 Gyr, is confined exclusively to a well-defined area of the (U, V)velocity plane. The age separating young and old disk stars is also thatseparating giant evolution of the Hyades (near main-sequence luminosity)and M67 (degenerate helium cores and a large luminosity rise) kinds. Thetwo disk populations are also separated by such indexes as the g-indexof Geveva photometry. There appears to be no obvious need to invokeexogeneous influences to understand the motion and heavy-elementabundance distributions of the best-observed stars near the Sun.Individual stars of special interest include the parallax star HD 55575,which may be an equal-component binary, and the high-velocity star HD220127, with a well-determined space velocity near 1000 km s^-1.

Astrometric positions of stars with high proper motions in the Southern Hemisphere
Several stars with large proper motions, cited by W.J. Luyten, wereincluded in the preliminary programme for the HIPPARCOS mission. Whenperforming preparatory measurements of plates, difficulties wereencountered in identifying certain of these stars when relying only onpublished coordinates. We have taken advantage of this work whichrelates to the southern sky in order to determine the astrometricposition of the greatest possible number of these objects, even forthose which were not included in the programme. Catalogue is onlyavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

A catalogue of [Fe/H] determinations: 1996 edition
A fifth Edition of the Catalogue of [Fe/H] determinations is presentedherewith. It contains 5946 determinations for 3247 stars, including 751stars in 84 associations, clusters or galaxies. The literature iscomplete up to December 1995. The 700 bibliographical referencescorrespond to [Fe/H] determinations obtained from high resolutionspectroscopic observations and detailed analyses, most of them carriedout with the help of model-atmospheres. The Catalogue is made up ofthree formatted files: File 1: field stars, File 2: stars in galacticassociations and clusters, and stars in SMC, LMC, M33, File 3: numberedlist of bibliographical references The three files are only available inelectronic form at the Centre de Donnees Stellaires in Strasbourg, viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5), or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Star Streams and Galactic Structure
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1996AJ....112.1595E&db_key=AST

A Survey of Ca II H and K Chromospheric Emission in Southern Solar-Type Stars
More than 800 southern stars within 50 pc have been observed forchromospheric emission in the cores of the Ca II H and K lines. Most ofthe sample targets were chosen to be G dwarfs on the basis of colors andspectral types. The bimodal distribution in stellar activity first notedin a sample of northern stars by Vaughan and Preston in 1980 isconfirmed, and the percentage of active stars, about 30%, is remarkablyconsistent between the northern and southern surveys. This is especiallycompelling given that we have used an entirely different instrumentalsetup and stellar sample than used in the previous study. Comparisons tothe Sun, a relatively inactive star, show that most nearby solar-typestars have a similar activity level, and presumably a similar age. Weidentify two additional subsamples of stars -- a very active group, anda very inactive group. The very active group may be made up of youngstars near the Sun, accounting for only a few percent of the sample, andappears to be less than ~0.1 Gyr old. Included in this high-activitytail of the distribution, however, is a subset of very close binaries ofthe RS CVn or W UMa types. The remaining members of this population maybe undetected close binaries or very young single stars. The veryinactive group of stars, contributting ~5%--10% to the total sample, maybe those caught in a Maunder Minimum type phase. If the observations ofthe survey stars are considered to be a sequence of snapshots of the Sunduring its life, we might expect that the Sun will spend about 10% ofthe remainder of its main sequence life in a Maunder Minimum phase.

A New Version of the Catalog of CH and Related Stars (CH95 Catalog)
A new version of the catalog of CH and related stars contains 244 fieldstars and 17 globular cluster stars. Here a list of these stars withtheir coordinates, their positions in the HR diagram and somestatistical diagrams is presented. The catalog will soon be available inthe printed and computerized versions.

Ca II H and K Filter Photometry on the UVBY System. II. The Catalog of Observations
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995AJ....109.2828T&db_key=AST

Analyses of archival data for cool dwarfs. 2: A catalog of temperatures
A calibration presented in a previous paper is used in this paper toderive temperatures for FGK stars near the main sequence. Thecalibration is checked against published counterparts, and it is foundthat previous calibrations have not established K-dwarf temperatures inparticular beyond reasonable doubt. The database assembled to derive thetemperatures is described, and the problems posed by close binaries areevaluated. The newly derived temperatures are used to check a line-depthratio proposed as a thermometer by Gray and Johanson (1991, PASP, 103,439), and it is found that the ratio is metallicity-sensitive.Temperatures are given for a total of 417 stars.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:インディアン座
Right ascension:22h01m36.52s
Declination:-53°05'36.9"
Apparent magnitude:7.14
Distance:35.765 parsecs
Proper motion RA:53.6
Proper motion Dec:-507.8
B-T magnitude:7.805
V-T magnitude:7.195

Catalogs and designations:
Proper Names
HD 1989HD 208998
TYCHO-2 2000TYC 8809-1062-1
USNO-A2.0USNO-A2 0300-37465569
HIPHIP 108736

→ Request more catalogs and designations from VizieR