To Survive in the Universe    
Services
    Why to Adopt     Top Contributors     천체사진     컬렉션     포럼     Blog New!     질문및답변     로그인  
→ Adopt this star  

HD 30736


내용

사진

사진 업로드

DSS Images   Other Images


관련 글

An X-Ray Search for Compact Central Sources in Supernova Remnants. II. Six Large-Diameter SNRs
We present the second in a series of studies in which we have searchedfor undiscovered neutron stars in supernova remnants (SNRs). This paperdeals with the six largest SNRs in our sample, too large for Chandra orXMM-Newton to cover in a single pointing. These SNRs are nearby, withtypical distances of <1 kpc. We therefore used the ROSAT BrightSource Catalog and past observations in the literature to identify X-raypoint sources in and near the SNRs. Out of 54 sources, we wereimmediately able to identify optical/IR counterparts to 41 from existingdata. We obtained Chandra snapshot images of the remaining 13 sources.Of these, 10 were point sources with readily identified counterparts,two were extended, and one was not detected in the Chandra observationbut is likely a flare star. One of the extended sources may be a pulsarwind nebula, but if so it is probably not associated with the nearbySNR. We are then left with no identified neutron stars in these six SNRsdown to luminosity limits of ~1032 ergs s-1. Theselimits are generally less than the luminosities of typical neutron starsof the same ages, but are compatible with some lower luminosity sourcessuch as the neutron stars in the SNRs CTA 1 and IC 443.

Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs
We present a uniform catalog of stellar properties for 1040 nearby F, G,and K stars that have been observed by the Keck, Lick, and AAT planetsearch programs. Fitting observed echelle spectra with synthetic spectrayielded effective temperature, surface gravity, metallicity, projectedrotational velocity, and abundances of the elements Na, Si, Ti, Fe, andNi, for every star in the catalog. Combining V-band photometry andHipparcos parallaxes with a bolometric correction based on thespectroscopic results yielded stellar luminosity, radius, and mass.Interpolating Yonsei-Yale isochrones to the luminosity, effectivetemperature, metallicity, and α-element enhancement of each staryielded a theoretical mass, radius, gravity, and age range for moststars in the catalog. Automated tools provide uniform results and makeanalysis of such a large sample practical. Our analysis method differsfrom traditional abundance analyses in that we fit the observed spectrumdirectly, rather than trying to match equivalent widths, and wedetermine effective temperature and surface gravity from the spectrumitself, rather than adopting values based on measured photometry orparallax. As part of our analysis, we determined a new relationshipbetween macroturbulence and effective temperature on the main sequence.Detailed error analysis revealed small systematic offsets with respectto the Sun and spurious abundance trends as a function of effectivetemperature that would be inobvious in smaller samples. We attempted toremove these errors by applying empirical corrections, achieving aprecision per spectrum of 44 K in effective temperature, 0.03 dex inmetallicity, 0.06 dex in the logarithm of gravity, and 0.5 kms-1 in projected rotational velocity. Comparisons withprevious studies show only small discrepancies. Our spectroscopicallydetermined masses have a median fractional precision of 15%, but theyare systematically 10% higher than masses obtained by interpolatingisochrones. Our spectroscopic radii have a median fractional precisionof 3%. Our ages from isochrones have a precision that variesdramatically with location in the Hertzsprung-Russell diagram. We planto extend the catalog by applying our automated analysis technique toother large stellar samples.

The Planet-Metallicity Correlation
We have recently carried out spectral synthesis modeling to determineTeff, logg, vsini, and [Fe/H] for 1040 FGK-type stars on theKeck, Lick, and Anglo-Australian Telescope planet search programs. Thisis the first time that a single, uniform spectroscopic analysis has beenmade for every star on a large Doppler planet search survey. We identifya subset of 850 stars that have Doppler observations sufficient todetect uniformly all planets with radial velocity semiamplitudes K>30m s-1 and orbital periods shorter than 4 yr. From this subsetof stars, we determine that fewer than 3% of stars with-0.5<[Fe/H]<0.0 have Doppler-detected planets. Above solarmetallicity, there is a smooth and rapid rise in the fraction of starswith planets. At [Fe/H]>+0.3 dex, 25% of observed stars have detectedgas giant planets. A power-law fit to these data relates the formationprobability for gas giant planets to the square of the number of metalatoms. High stellar metallicity also appears to be correlated with thepresence of multiple-planet systems and with the total detected planetmass. This data set was examined to better understand the origin of highmetallicity in stars with planets. None of the expected fossilsignatures of accretion are observed in stars with planets relative tothe general sample: (1) metallicity does not appear to increase as themass of the convective envelopes decreases, (2) subgiants with planetsdo not show dilution of metallicity, (3) no abundance variations for Na,Si, Ti, or Ni are found as a function of condensation temperature, and(4) no correlations between metallicity and orbital period oreccentricity could be identified. We conclude that stars with extrasolarplanets do not have an accretion signature that distinguishes them fromother stars; more likely, they are simply born in higher metallicitymolecular clouds.Based on observations obtained at Lick and Keck Observatories, operatedby the University of California, and the Anglo-Australian Observatories.

Rotation and Lithium Surface Abundances, Revisited
For giants in the Hertzsprung gap, the relations betweenTeff, vsini, and lithium surface abundances arereinvestigated and compared with the relations found for Hyadesmain-sequence F stars. For the Hyades main-sequence F stars, the vsinidecrease steeply around Teff~6450 K. At the same temperaturethe lithium surface abundances show a narrow, deep dip. For most giantsthere is also a steep decrease of vsini for Teff around 6450K. At this temperature the lithium surface abundances of the giants alsodecrease steeply and remain low for Teff<6400 K. Thechanges in rotation and Li surface abundances occur over a temperatureinterval of less than 300 K, which for a 2 Msolar giantcorresponds to an age interval of about 106 yr. Thesimultaneous steep decreases of rotation velocities and Li surfaceabundances indicate that for the giants these changes are due to thesame cause, which we suggest to be deep mixing. It then seems ratherlikely that for the Hyades main-sequence F5 V stars the decrease ofrotation and Li surface abundance is also caused by deep mixing. Wesuggest that in both cases the changes are related to the merging of thehydrogen and helium convection zones.

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Rotation and lithium in single giant stars
In the present work, we study the link between rotation and lithiumabundance in giant stars of luminosity class III, on the basis of alarge sample of 309 single stars of spectral type F, G and K. We havefound a trend for a link between the discontinuity in rotation at thespectral type G0III and the behavior of lithium abundances around thesame spectral type. The present work also shows that giant starspresenting the highest lithium contents, typically stars earlier thanG0III, are those with the highest rotation rates, pointing for adependence of lithium content on rotation, as observed for otherluminosity classes. Giant stars later than G0III present, as a rule, thelowest rotation rates and lithium contents. A large spread of about fivemagnitudes in lithium abundance is observed for the slow rotators.Finally, single giant stars with masses 1.5 < M/Msun<=2.5 show a clearest trend for a correlation between rotational velocityand lithium abundance. Based on observations collected at theObservatoire de Haute -- Provence (France) and at the European SouthernObservatory, La Silla (Chile). Table 2 is only available electronicallywith the On-Line publication athttp://link.springer.de/link/service/00230/

A catalog of rotational and radial velocities for evolved stars
Rotational and radial velocities have been measured for about 2000evolved stars of luminosity classes IV, III, II and Ib covering thespectral region F, G and K. The survey was carried out with the CORAVELspectrometer. The precision for the radial velocities is better than0.30 km s-1, whereas for the rotational velocity measurementsthe uncertainties are typically 1.0 km s-1 for subgiants andgiants and 2.0 km s-1 for class II giants and Ib supergiants.These data will add constraints to studies of the rotational behaviourof evolved stars as well as solid informations concerning the presenceof external rotational brakes, tidal interactions in evolved binarysystems and on the link between rotation, chemical abundance and stellaractivity. In this paper we present the rotational velocity v sin i andthe mean radial velocity for the stars of luminosity classes IV, III andII. Based on observations collected at the Haute--Provence Observatory,Saint--Michel, France and at the European Southern Observatory, LaSilla, Chile. Table \ref{tab5} also available in electronic form at CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue.
We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.

The lithium content and other properties of F2-G5 giants in the Hertzsprung Gap
As stars of 2-5 solar mass evolve across the Hertzsprung Gap they shouldfirst deplete their surface lithium by convective dilution and then,when convection penetrates deeper, begin to bring CN processed materialto their surfaces. To investigate this process we have observed 52giants, 25 of which have known C/N ratios, for their Li abundances.After eliminating four stars that may actually be dwarfs and includingthe two components of Capella analyzed by Pilachowski and Sowell we havecompared our (Li/Fe) ratios with models of Swenson. For stars showing vsin i greater than 50 km/s we find (Li/Fe) to be unaffected by mixingfor B - V less than 0.7 as predicted. For stars cooler than B - V = 0.7both v sin i and (Li/Fe) drop to smaller values. For the sharp linedstars (v sin i less than 50 km/s) we find a drop in Li between B - V =0.45 and 0.60 which cannot be understood in terms of dilution byconvection. Various possible causes of such an early depletion ordilution of surface Li are discussed including diffusion at the base ofthe convection zone, mass loss possibly enhanced by pulsation, andmagnetic activity as in the magnetic A and B type stars. The models ofRicher & Michaud (1993) with diffusion point toward a satisfactorysolution. A few giants with low v sin i values stand out with muchhigher than expected (Li/Fe) values despite their cool effectivetemperatures. We do not understand why those stars have not depletedtheir lithium as have most giants of similar color. The correlation of(N/C) with (Li/Fe) follows expectations in so far as almost all starswith enhanced (N/C) have depleted their Li as well.

Third preliminary catalogue of stars observed with the photoelectric astrolabe of the Beijing Astronomical Observatory.
Not Available

A catalogue of four-color photometry of late F-type stars.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1969AJ.....74..705P&db_key=AST

UBV photometry of 550 F, G and K type stars
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1966MNRAS.133..475A&db_key=AST

La mesure des vitesses radiales au prisme objectif - X - 4e liste de vitesses radiales déterminées au prisme objectif à vision directe
Not Available

새 글 등록


관련 링크

  • - 링크가 없습니다. -
새 링크 등록


다음 그룹에 속해있음:


관측 및 측정 데이터

별자리:마차부자리
적경:04h52m21.51s
적위:+45°56'23.7"
가시등급:6.69
거리:64.809 파섹
적경상의 고유운동:52.7
적위상의 고유운동:-54.6
B-T magnitude:7.374
V-T magnitude:6.747

천체목록:
일반명
HD 1989HD 30736
TYCHO-2 2000TYC 3343-1459-1
USNO-A2.0USNO-A2 1350-05001313
HIPHIP 22650

→ VizieR에서 더 많은 목록을 가져옵니다.