Home     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Astro Photo     The Collection     Forum     Blog New!     FAQ     Login  
→ Adopt this star  

HD 215257


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

A catalog of rotational and radial velocities for evolved stars. IV. Metal-poor stars^
Aims.The present paper describes the first results of an observationalprogram intended to refine and extend the existing v sin i measurementsof metal-poor stars, with an emphasis on field evolved stars.Methods: .The survey was carried out with the FEROS and CORALIEspectrometers. For the v sin i measurements, obtained from spectralsynthesis, we estimate an uncertainty of about 2.0 km s-1. Results: .Precise rotational velocities v sin i are presented for alarge sample of 100 metal-poor stars, most of them evolving off themain-sequence. For the large majority of the stars composing the presentsample, rotational velocities have been measured for the first time.

Potassium abundances in nearby metal-poor stars
Aims.The potassium abundances for 58 metal-poor stars are determinedusing high-resolution spectroscopy. The abundance trends in stars ofdifferent population are discussed. Methods: .All abundanceresults have been derived from NLTE statistical equilibrium calculationsand spectrum synthesis methods. Results: .The NLTE corrections aresignificant (-0.20 to -0.55 dex) and they depend on the effectivetemperatures and surface gravities. The potassium abundances of thindisk, thick disk and halo stars show distinct trends, such as in thecase of the α-elements. [K/Fe] gradually increases with a decreasein [Fe/H] for thin disk stars, [K/Fe] of thick disk stars is nearlyconstant at [K/Fe] ~ +0.30 dex; halo stars also have nearly constantvalues of [K/Fe] ~ +0.20 dex. Conclusions: .The deriveddependence between [K/Fe] and [Fe/H] is in agreement with thetheoretical prediction of published model calculations of the chemicalevolution of the Galaxy. The nearly constant [K/Mg] ratio with smallscatter suggests that the nucleosynthesis of potassium is closelycoupled to the α-elements.

Effective temperature scale and bolometric corrections from 2MASS photometry
We present a method to determine effective temperatures, angularsemi-diameters and bolometric corrections for population I and II FGKtype stars based on V and 2MASS IR photometry. Accurate calibration isaccomplished by using a sample of solar analogues, whose averagetemperature is assumed to be equal to the solar effective temperature of5777 K. By taking into account all possible sources of error we estimateassociated uncertainties to better than 1% in effective temperature andin the range 1.0-2.5% in angular semi-diameter for unreddened stars.Comparison of our new temperatures with other determinations extractedfrom the literature indicates, in general, remarkably good agreement.These results suggest that the effective temperaure scale of FGK starsis currently established with an accuracy better than 0.5%-1%. Theapplication of the method to a sample of 10 999 dwarfs in the Hipparcoscatalogue allows us to define temperature and bolometric correction (Kband) calibrations as a function of (V-K), [m/H] and log g. Bolometriccorrections in the V and K bands as a function of T_eff, [m/H] and log gare also given. We provide effective temperatures, angularsemi-diameters, radii and bolometric corrections in the V and K bandsfor the 10 999 FGK stars in our sample with the correspondinguncertainties.

Chemical abundances of 32 mildly metal-poor stars
Context: .The formation scenario of the Galactic thick disk is anunresolved problem. Chemical abundances in long-lived dwarf stars of thethin and thick disks provide information of the Galactic diskformation.Aims.We present photospheric abundances of the O, Na, Mg, Al,Si, Ca, Sc, Ti, V, Cr, Mn, Ni, and Ba elements for 32 mildly metal-poorstars with [Fe/H]˜ -0.7. According to their kinematics, age, and [α/Fe] , sample stars are identified to thin disk, thick disk, andhalo population memberships. Element abundances for sample stars arediscussed as a function of metallicity.Methods.High resolution and highsignal-to-noise ratio spectra were obtained with the CoudéEchelle Spectrograph mounted on the 2.16 m telescope at the NationalAstronomical Observatories (Xinglong, China). Effective temperatureswere estimated from colour indices, and surface gravities from Hipparcosparallaxes. Stellar abundances were determined from a differential LTEanalysis. The kinematics parameters were calculated from the parallax,proper motion, and radial velocity. Stellar ages were determined fromtheoretical stellar evolution tracks.Results.The average age of thethick disk stars is older than the thin disk stars. Our elementabundance results extend and confirm previous works. The oxygen andother α-elements (Mg, Si, Ca, and Ti) abundances of thin and thickdisk stars show distinct trends at [Fe/H]≤-0.60. The [Al/Fe]behaviour is exactly as an α-element, although the separation for[Na/Fe] of thin and thick disk stars is not clear. The elements V, Cr,and Ni follow Fe very closely, and there is no offset between thin andthick disk stars, but the Sc and Mn abundance trends of the thin andthick disk stars are different, and [Ba/Fe] of thin disk and thick diskstars shows different behaviour.

Chemical Composition in the Globular Cluster M71 from Keck HIRES Spectra of Turnoff Stars
We have made observations with the Keck I telescope and HIRES at aresolution of ~45,000 of five nearly identical stars at the turnoff ofthe metal-rich globular cluster M71. We derive stellar parameters andabundances of several elements. Our mean Fe abundance,[Fe/H]=-0.80+/-0.02, is in excellent agreement with previous clusterdeterminations from both giants and near-turnoff stars. There is noclear evidence for any star-to-star abundance differences orcorrelations in our sample. Abundance ratios of the Fe peak elements(Cr, Ni) are similar to Fe. The turnoff stars in M71 have remarkablyconsistent enhancements of 0.2-0.3 dex in [Si/Fe], [Ca/Fe], and [Ti/Fe],like the red giants. Our [Mg/Fe] ratio is somewhat lower than thatsuggested by other studies. We compare our mean abundances for the fiveM71 stars with field stars of similar metallicity [Fe/H]: eight withhalo kinematics and 17 with disk kinematics. The abundances of theα-fusion products (Mg, Si, Ca, Ti) agree with both samples butseem a closer match to the disk stars. The Mg abundance in M71 is at thelower edge of the disk and halo samples. The neutron-capture elements, Yand Ba, are enhanced relative to solar in the M71 turnoff stars. Ourratio [Ba/Fe] is similar to that of the halo field stars but a factor of2 above that for the disk field stars. The important [Ba/Y] ratio issignificantly lower than M71 giant values; the precluster material mayhave been exposed to a higher neutron flux than the disk stars orself-enrichment has occurred subsequent to cluster star formation. TheNa content of the M71 turnoff stars is remarkably similar to that in thedisk field stars but more than a factor of 2 higher than the halo fieldstar sample. We find [Na/Fe]=+0.14+/-0.04 with a spread less than halfof that found in the red giants in M71. Excluding Mg, the lack ofintracluster α-element variations (turnoff vis-à-visgiants) suggests that the polluting material needed to explain theabundance patterns in M71 did not arise from explosive nucleosynthesisbut in a more traditional s-process environment such as AGB stars. Thedetermination of light s-peak abundances should reveal whether thispollution occurred before or after cluster formation.

Abundance trends in kinematical groups of the Milky Way's disk
We have compiled a large catalogue of metallicities and abundance ratiosfrom the literature in order to investigate abundance trends of severalalpha and iron peak elements in the thin disk and the thick disk of theGalaxy. The catalogue includes 743 stars with abundances of Fe, O, Mg,Ca, Ti, Si, Na, Ni and Al in the metallicity range -1.30 < [Fe/H]< +0.50. We have checked that systematic differences betweenabundances measured in the different studies were lower than randomerrors before combining them. Accurate distances and proper motions fromHipparcos and radial velocities from several sources have been retreivedfor 639 stars and their velocities (U, V, W) and galactic orbits havebeen computed. Ages of 322 stars have been estimated with a Bayesianmethod of isochrone fitting. Two samples kinematically representative ofthe thin and thick disks have been selected, taking into account theHercules stream which is intermediate in kinematics, but with a probabledynamical origin. Our results show that the two disks are chemicallywell separated, they overlap greatly in metallicity and both showparallel decreasing alpha elements with increasing metallicity, in theinterval -0.80 < [Fe/H] < -0.30. The Mg enhancement with respectto Fe of the thick disk is measured to be 0.14 dex. An even largerenhancement is observed for Al. The thick disk is clearly older than thethin disk with tentative evidence of an AMR over 2-3 Gyr and a hiatus instar formation before the formation of the thin disk. We do not observea vertical gradient in the metallicity of the thick disk. The Herculesstream has properties similar to that of the thin disk, with a widerrange of metallicity. Metal-rich stars assigned to the thick disk andsuper-metal-rich stars assigned to the thin disk appear as outliers inall their properties.

Abundance correlations in mildly metal-poor stars. II. Light elements (C to Ca)
Accurate relative abundances have been obtained for carbon, oxygen,sodium, aluminium, silicon, and calcium in a sample of mildly metal-poorstars. This analysis complements a previous study carried out by Jehinet al. ([CITE], A&A, 341, 241), which provided the basis for theEASE scenario. This scenario postulates that field metal-poor stars wereborn in self-enriched proto-globular cluster clouds. By furtherinvestigating the correlations between the different α-elementabundances, we propose a modified scenario for the formation ofintermediate metallicity stars, in which the stars exhibiting lower thanaverage α/Fe abundance ratios would form in low mass clouds,unable to sustain the formation of very massive stars (M 30~M_ȯ). Moreover, the carbon-to-iron ratio is found to decrease asone climbs the so-called Population IIb branch, i.e. when the s-elementabundance increases. In the framework of the EASE scenario, we interpretthis anticorrelation between the carbon and the s-element abundances asa signature of a hot bottom burning process in the metal-poor AGB starswhich expelled the matter subsequently accreted by our Population IIbstars.Based on observations collected at the European Southern Observatory, LaSilla, Chile (ESO Programmes 56.E-0384, 57.E-0400 and 59.E-0257).

Magnesium abundances in mildly metal-poor stars from different indicators
We present Mg abundances derived from high-resolution spectra usingseveral MgI and two high-excitation MgII lines for 19 metal-poor starswith [Fe/H] values between -1.1 and +0.2. The main goal is to search forsystematic differences in the derived abundances between the twoionization state lines. Our analysis shows that the one-dimensionallocal thermodynamic equilibrium (LTE) and non-LTE (N-LTE) study finds avery good agreement between these features. The [Mg/Fe] versus [Fe/H]relationship derived, despite the small sample of stars, is also inagreement with the classical figure of increasing [Mg/Fe] withdecreasing metallicity. We find a significant scatter however, in the[Mg/Fe] ratio at [Fe/H]~-0.6 which is currently explained as aconsequence of the overlap at this metallicity of thick- and thin-discstars, which were probably formed from material with differentnucleosynthesis histories. We speculate on the possible consequences ofthe agreement found between MgI and MgII lines on the very well-known Oproblem in metal-poor stars. We also study the [O/Mg] ratio in thesample stars using O abundances from the literature and find that thecurrent observations and nucleosynthetic predictions from Type IIsupernovae disagree. We briefly discuss some alternatives to solve thisdiscrepancy.

Lithium abundances of the local thin disc stars
Lithium abundances are presented for a sample of 181 nearby F and Gdwarfs with accurate Hipparcos parallaxes. The stars are on circularorbits about the Galactic centre and, hence, are identified as belongingto the thin disc. This sample is combined with two published surveys toprovide a catalogue of lithium abundances, metallicities ([Fe/H]),masses, and ages for 451 F-G dwarfs, almost all belonging to the thindisc. The lithium abundances are compared and contrasted with publishedlithium abundances for F and G stars in local open clusters. The fieldstars span a larger range in [Fe/H] than the clusters for which [Fe/H]~=0.0 +/- 0.2. The initial (i.e. interstellar) lithium abundance of thesolar neighbourhood, as derived from stars for which astration oflithium is believed to be unimportant, is traced from logɛ(Li) =2.2 at [Fe/H]=-1 to logɛ(Li) = 3.2 at +0.1. This form for theevolution is dependent on the assumption that astration of lithium isnegligible for the stars defining the relation. An argument is advancedthat this latter assumption may not be entirely correct, and, theevolution of lithium with [Fe/H] may be flatter than previouslysupposed. A sharp Hyades-like Li dip is not seen among the field starsand appears to be replaced by a large spread among lithium abundances ofstars more massive than the lower mass limit of the dip. Astration oflithium by stars of masses too low to participate in the Li dip isdiscussed. These stars show little to no spread in lithium abundance ata given [Fe/H] and mass.

A Spectral Atlas of F and G Stars
We present an atlas of a group of bright stars in the range of spectralclasses F--G and luminosity classes I--V. The spectra were obtainedwith spectral resolution R ˜ 15,000 within spectral region4500--6620 Å. Typical spectra of stars with different metallicity[Fe/H] are included. We also show the digital version of the spectraldata in FITS format.

The Indo-US Library of Coudé Feed Stellar Spectra
We have obtained spectra for 1273 stars using the 0.9 m coudéfeed telescope at Kitt Peak National Observatory. This telescope feedsthe coudé spectrograph of the 2.1 m telescope. The spectra havebeen obtained with the no. 5 camera of the coudé spectrograph anda Loral 3K×1K CCD. Two gratings have been used to provide spectralcoverage from 3460 to 9464 Å, at a resolution of ~1 Å FWHMand at an original dispersion of 0.44 Å pixel-1. For885 stars we have complete spectra over the entire 3460 to 9464 Åwavelength region (neglecting small gaps of less than 50 Å), andpartial spectral coverage for the remaining stars. The 1273 stars havebeen selected to provide broad coverage of the atmospheric parametersTeff, logg, and [Fe/H], as well as spectral type. The goal ofthe project is to provide a comprehensive library of stellar spectra foruse in the automated classification of stellar and galaxy spectra and ingalaxy population synthesis. In this paper we discuss thecharacteristics of the spectral library, viz., details of theobservations, data reduction procedures, and selection of stars. We alsopresent a few illustrations of the quality and information available inthe spectra. The first version of the complete spectral library is nowpublicly available from the National Optical Astronomy Observatory(NOAO) via ftp and http.

Stellar Chemical Signatures and Hierarchical Galaxy Formation
To compare the chemistries of stars in the Milky Way dwarf spheroidal(dSph) satellite galaxies with stars in the Galaxy, we have compiled alarge sample of Galactic stellar abundances from the literature. Whenkinematic information is available, we have assigned the stars tostandard Galactic components through Bayesian classification based onGaussian velocity ellipsoids. As found in previous studies, the[α/Fe] ratios of most stars in the dSph galaxies are generallylower than similar metallicity Galactic stars in this extended sample.Our kinematically selected stars confirm this for the Galactic halo,thin-disk, and thick-disk components. There is marginal overlap in thelow [α/Fe] ratios between dSph stars and Galactic halo stars onextreme retrograde orbits (V<-420 km s-1), but this is notsupported by other element ratios. Other element ratios compared in thispaper include r- and s-process abundances, where we find a significantoffset in the [Y/Fe] ratios, which results in a large overabundance in[Ba/Y] in most dSph stars compared with Galactic stars. Thus, thechemical signatures of most of the dSph stars are distinct from thestars in each of the kinematic components of the Galaxy. This resultrules out continuous merging of low-mass galaxies similar to these dSphsatellites during the formation of the Galaxy. However, we do not ruleout very early merging of low-mass dwarf galaxies, since up to one-halfof the most metal-poor stars ([Fe/H]<=-1.8) have chemistries that arein fair agreement with Galactic halo stars. We also do not rule outmerging with higher mass galaxies, although we note that the LMC and theremnants of the Sgr dwarf galaxy are also chemically distinct from themajority of the Galactic halo stars. Formation of the Galaxy's thickdisk by heating of an old thin disk during a merger is also not ruledout; however, the Galaxy's thick disk itself cannot be comprised of theremnants from a low-mass (dSph) dwarf galaxy, nor of a high-mass dwarfgalaxy like the LMC or Sgr, because of differences in chemistry.The new and independent environments offered by the dSph galaxies alsoallow us to examine fundamental assumptions related to thenucleosynthesis of the elements. The metal-poor stars ([Fe/H]<=-1.8)in the dSph galaxies appear to have lower [Ca/Fe] and [Ti/Fe] than[Mg/Fe] ratios, unlike similar metallicity stars in the Galaxy.Predictions from the α-process (α-rich freeze-out) would beconsistent with this result if there have been a lack of hypernovae indSph galaxies. The α-process could also be responsible for thevery low Y abundances in the metal-poor stars in dSph's; since [La/Eu](and possibly [Ba/Eu]) are consistent with pure r-process results, thelow [Y/Eu] suggests a separate r-process site for this light(first-peak) r-process element. We also discuss SNe II rates and yieldsas other alternatives, however. In stars with higher metallicities([Fe/H]>=-1.8), contributions from the s-process are expected; [(Y,La, and Ba)/Eu] all rise as expected, and yet [Ba/Y] is still muchhigher in the dSph stars than similar metallicity Galactic stars. Thisresult is consistent with s-process contributions from lower metallicityAGB stars in dSph galaxies, and is in good agreement with the slowerchemical evolution expected in the low-mass dSph galaxies relative tothe Galaxy, such that the build-up of metals occurs over much longertimescales. Future investigations of nucleosynthetic constraints (aswell as galaxy formation and evolution) will require an examination ofmany stars within individual dwarf galaxies.Finally, the Na-Ni trend reported in 1997 by Nissen & Schuster isconfirmed in Galactic halo stars, but we discuss this in terms of thegeneral nucleosynthesis of neutron-rich elements. We do not confirm thatthe Na-Ni trend is related to the accretion of dSph galaxies in theGalactic halo.

Empirically Constrained Color-Temperature Relations. II. uvby
A new grid of theoretical color indices for the Strömgren uvbyphotometric system has been derived from MARCS model atmospheres and SSGsynthetic spectra for cool dwarf and giant stars having-3.0<=[Fe/H]<=+0.5 and 3000<=Teff<=8000 K. Atwarmer temperatures (i.e., 8000-2.0. To overcome thisproblem, the theoretical indices at intermediate and high metallicitieshave been corrected using a set of color calibrations based on fieldstars having well-determined distances from Hipparcos, accurateTeff estimates from the infrared flux method, andspectroscopic [Fe/H] values. In contrast with Paper I, star clustersplayed only a minor role in this analysis in that they provided asupplementary constraint on the color corrections for cool dwarf starswith Teff<=5500 K. They were mainly used to test thecolor-Teff relations and, encouragingly, isochrones thatemploy the transformations derived in this study are able to reproducethe observed CMDs (involving u-v, v-b, and b-y colors) for a number ofopen and globular clusters (including M67, the Hyades, and 47 Tuc)rather well. Moreover, our interpretations of such data are verysimilar, if not identical, with those given in Paper I from aconsideration of BV(RI)C observations for the sameclusters-which provides a compelling argument in support of thecolor-Teff relations that are reported in both studies. Inthe present investigation, we have also analyzed the observedStrömgren photometry for the classic Population II subdwarfs,compared our ``final'' (b-y)-Teff relationship with thosederived empirically in a number of recent studies and examined in somedetail the dependence of the m1 index on [Fe/H].Based, in part, on observations made with the Nordic Optical Telescope,operated jointly on the island of La Palma by Denmark, Finland, Iceland,Norway, and Sweden, in the Spanish Observatorio del Roque de losMuchachos of the Instituto de Astrofisica de Canarias.Based, in part, on observations obtained with the Danish 1.54 mtelescope at the European Southern Observatory, La Silla, Chile.

A CCD imaging search for wide metal-poor binaries
We explored the regions within a radius of 25 arcsec around 473 nearby,low-metallicity G- to M-type stars using (VR)I optical filters andsmall-aperture telescopes. About 10% of the sample was searched up toangular separations of 90 arcsec. We applied photometric and astrometrictechniques to detect true physical companions to the targets. The greatmajority of the sample stars was drawn from the Carney-Latham surveys;their metallicities range from roughly solar to [Fe/H] = -3.5 dex. OurI-band photometric survey detected objects that are between 0 and 5 magfainter (completeness) than the target stars; the maximum dynamicalrange of our exploration is 9 mag. We also investigated the literature,and inspected images from the Digitized Sky Surveys to complete oursearch. By combining photometric and proper motion measurements, weretrieved 29 previously known companions, and identified 13 new propermotion companions. Near-infrared 2MASS photometry is provided for thegreat majority of them. Low-resolution optical spectroscopy (386-1000nm) was obtained for eight of the new companion stars. Thesespectroscopic data confirm them as cool, late-type, metal-depleteddwarfs, with spectral classes from esdK7 to sdM3. After comparison withlow-metallicity evolutionary models, we estimate the masses of theproper motion companion stars to be in the range 0.5-0.1Mȯ. They are moving around their primary stars atprojected separations between ˜32 and ˜57 000 AU. These orbitalsizes are very similar to those of solar-metallicity stars of the samespectral types. Our results indicate that about 15% of the metal-poorstars have stellar companions in wide orbits, which is in agreement withthe binary fraction observed among main sequence G- to M-type stars andT Tauri stars.Based on observations made with the IAC80 telescope operated on theisland of Tenerife by the Instituto de Astrofísica de Canarias inthe Spanish Observatorio del Teide; also based on observations made withthe 2.2 m telescope of the German-Spanish Calar Alto Observatory(Almería, Spain), the William Herschel Telescope (WHT) operatedon the island of La Palma by the Isaac Newton Group in the SpanishObservatorio del Roque de los Muchachos (ORM) of the Instituto deAstrofísica de Canarias; and the Telescopio Nazionale Galileo(TNG) at the ORM.The complete Table 1 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/419/167

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Abundances of Na, Mg and Al in nearby metal-poor stars
To determine the population membership of nearby stars we exploreabundance results obtained for the light neutron-rich elements23Na and 27 Al in a small sample of moderatelymetal-poor stars. Spectroscopic observations are limited to the solarneighbourhood so that gravities can be determined from HIPPARCOSparallaxes, and the results are confronted with those for a separatesample of more metal-poor typical halo stars. Following earlierinvestigations, the abundances of Na, Mg and Al have been derived fromNLTE statistical equilibrium calculations used as input to line profilesynthesis. Compared with LTE the abundances require systematiccorrections, with typical values of +0.05 for [Mg/Fe], -0.1 for [Na/Fe]and +0.2 for [Al/Fe] in thick disk stars where [Fe/H] ˜ -0.6. Inmore metal-poor halo stars these values reach +0.1, -0.4, and +0.5,respectively, differences that can no longer be ignored.After careful selection of a clean subsample free from suspected orknown binaries and peculiar stars, we find that [Na/Mg] and [Al/Mg], incombination with [Mg/Fe], space velocities and stellar evolutionaryages, make possible an individual discrimination between thick disk andhalo stars. At present, this evidence is limited by the small number ofstars analyzed. We identify a gap at [Al/Mg] ˜ -0.15 and [Fe/H]˜ -1.0 that isolates stars of the thick disk from those in the halo.A similar separation occurs at [Na/Mg] ˜ -0.4. We do not confirm theage gap between thin and thick disk found by Fuhrmann. Instead we findan age boundary between halo and thick disk stars, however, with anabsolute value of 14 Gyr that must be considered as preliminary. Whilethe stellar sample is by no means complete, the resulting abundancesindicate the necessity to revise current models of chemical evolutionand/or stellar nucleosynthesis to allow for an adequate production ofneutron-rich species in early stellar generations.Based on observations collected at the German-Spanish AstronomicalCenter, Calar Alto (CAHA H01-2.2-002) and at the European SouthernObservatory, Chile (ESO 67.D-0086).

Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog
We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.

High-Precision Near-Infrared Photometry of a Large Sample of Bright Stars Visible from the Northern Hemisphere
We present the results of 8 yr of infrared photometric monitoring of alarge sample of stars visible from Teide Observatory (Tenerife, CanaryIslands). The final archive is made up of 10,949 photometric measuresthrough a standard InSb single-channel photometer system, principally inJHK, although some stars have measures in L'. The core of this list ofstars is the standard-star list developed for the Carlos SánchezTelescope. A total of 298 stars have been observed on at least twooccasions on a system carefully linked to the zero point defined byVega. We present high-precision photometry for these stars. The medianuncertainty in magnitude for stars with a minimum of four observationsand thus reliable statistics ranges from 0.0038 mag in J to 0.0033 magin K. Many of these stars are faint enough to be observable with arraydetectors (42 are K>8) and thus to permit a linkage of the bright andfaint infrared photometric systems. We also present photometry of anadditional 25 stars for which the original measures are no longeravailable, plus photometry in L' and/or M of 36 stars from the mainlist. We calculate the mean infrared colors of main-sequence stars fromA0 V to K5 V and show that the locus of the H-K color is linearlycorrelated with J-H. The rms dispersion in the correlation between J-Hand H-K is 0.0073 mag. We use the relationship to interpolate colors forall subclasses from A0 V to K5 V. We find that K and M main-sequence andgiant stars can be separated on the color-color diagram withhigh-precision near-infrared photometry and thus that photometry canallow us to identify potential mistakes in luminosity classclassification.

Oxygen line formation in late-F through early-K disk/halo stars. Infrared O I triplet and [O I] lines
In order to investigate the formation of O I 7771-5 and [O I] 6300/6363lines, extensive non-LTE calculations for neutral atomic oxygen werecarried out for wide ranges of model atmosphere parameters, which areapplicable to early-K through late-F halo/disk stars of variousevolutionary stages.The formation of the triplet O I lines was found to be well described bythe classical two-level-atom scattering model, and the non-LTEcorrection is practically determined by the parameters of theline-transition itself without any significant relevance to the detailsof the oxygen atomic model. This simplifies the problem in the sensethat the non-LTE abundance correction is essentially determined only bythe line-strength (Wlambda ), if the atmospheric parametersof Teff, log g, and xi are given, without any explicitdependence of the metallicity; thus allowing a useful analytical formulawith tabulated numerical coefficients. On the other hand, ourcalculations lead to the robust conclusion that LTE is totally valid forthe forbidden [O I] lines.An extensive reanalysis of published equivalent-width data of O I 7771-5and [O I] 6300/6363 taken from various literature resulted in theconclusion that, while a reasonable consistency of O I and [O I]abundances was observed for disk stars (-1 <~ [Fe/H] <~ 0), theexistence of a systematic abundance discrepancy was confirmed between OI and [O I] lines in conspicuously metal-poor halo stars (-3 <~[Fe/H] <~ -1) without being removed by our non-LTE corrections, i.e.,the former being larger by ~ 0.3 dex at -3 <~ [Fe/H] <~ -2.An inspection of the parameter-dependence of this discordance indicatesthat the extent of the discrepancy tends to be comparatively lessenedfor higher Teff/log g stars, suggesting the preference ofdwarf (or subgiant) stars for studying the oxygen abundances ofmetal-poor stars.Tables 2, 5, and 7 are only available in electronic form, at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/402/343 and Table\ref{tab3} is only available in electronic form athttp://www.edpsciences.org

Statistical cataloging of archival data for luminosity class IV-V stars. II. The epoch 2001 [Fe/H] catalog
This paper describes the derivation of an updated statistical catalog ofmetallicities. The stars for which those metallicities apply are ofspectral types F, G, and K, and are on or near the main sequence. Theinput data for the catalog are values of [Fe/H] published before 2002February and derived from lines of weak and moderate strength. Theanalyses used to derive the data have been based on one-dimensional LTEmodel atmospheres. Initial adjustments which are applied to the datainclude corrections to a uniform temperature scale which is given in acompanion paper (see Taylor \cite{t02}). After correction, the data aresubjected to a statistical analysis. For each of 941 stars considered,the results of that analysis include a mean value of [Fe/H], an rmserror, an associated number of degrees of freedom, and one or moreidentification numbers for source papers. The catalog of these resultssupersedes an earlier version given by Taylor (\cite{t94b}).Catalog is only available in electronic form at the CDS via anonymousftp cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/398/731

Statistical cataloging of archival data for luminosity class IV-V stars. I. The epoch 2001 temperature catalog
This paper is one of a pair in which temperatures and metallicitycatalogs for class IV-V stars are considered. The temperature catalogdescribed here is derived from a calibration based on stellar angulardiameters. If published calibrations of this kind are compared by usingcolor-index transformations, temperature-dependent differences among thecalibrations are commonly found. However, such differences are minimizedif attention is restricted to calibrations based on Johnson V-K. Acalibration of this sort from Di Benedetto (\cite{dib98}) is thereforetested and adopted. That calibration is then applied to spectroscopicand photometric data, with the latter predominating. Cousins R-Iphotometry receives special attention because of its high precision andlow metallicity sensitivity. Testing of temperatures derived from thecalibration suggests that their accuracy and precision are satisfactory,though further testing will be warranted as new results appear. Thesetemperatures appear in the catalog as values of theta equiv5040/T(effective). Most of these entries are accompanied by measured orderived values of Cousins R-I. Entries are given for 951 stars.Catalog is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/398/721

α Element Abundances in Mildly Metal-Poor Stars
We present [O/Fe] and other α-elements/Fe ratios in a sample of 24mildly metal-poor stars. The sample stars are thought to be brighterthan 9.0 magnitude and have available uvby photometric data. Also, basedon the typical LTE abundance analysis, we find that [Si/Fe] and [Ca/Fe]are correlated with each other. Combining the kinematic data and themetallicity, we can classify the sample stars into three groups. Anabundance analysis shows some evidence that these groups are chemicallydiscrete from each other. Further, the general trend of a decreasingoverabundance of the α elements with increasing metallicity hasbeen confirmed.

A Survey of Proper-Motion Stars. XVI. Orbital Solutions for 171 Single-lined Spectroscopic Binaries
We report 25,563 radial velocity measurements for 1359 single-linedstars in the Carney-Latham sample of 1464 stars selected for high propermotion. For 171 of these, we present spectroscopic orbital solutions. Wefind no obvious difference between the binary characteristics in thehalo and the disk populations. The observed frequency is the same, andthe period distributions are consistent with the hypothesis that the twosets of binaries were drawn from the same parent population. Thissuggests that metallicity in general, and radiative opacities inparticular, have little influence over the fragmentation process thatleads to short-period binaries. All the binaries with periods shorterthan 10 days have nearly circular orbits, while the binaries withperiods longer than 20 days exhibit a wide range of eccentricities and amedian value of 0.37. For the metal-poor high-velocity halo binaries inour sample, the transition from circular to eccentric orbits appears tooccur at about 20 days, supporting the conclusion that tidalcircularization on the main sequence is important for the oldestbinaries in the Galaxy. Some of the results presented here usedobservations made with the Multiple Mirror Telescope, a joint facilityof the Smithsonian Institution and the University of Arizona.

HIPPARCOS age-metallicity relation of the solar neighbourhood disc stars
We derive age-metallicity relations (AMRs) and orbital parameters forthe 1658 solar neighbourhood stars to which accurate distances aremeasured by the HIPPARCOS satellite. The sample stars comprise 1382 thindisc stars, 229 thick disc stars, and 47 halo stars according to theirorbital parameters. We find a considerable scatter for thin disc AMRalong the one-zone Galactic chemical evolution (GCE) model. Orbits andmetallicities of thin disc stars show now clear relation each other. Thescatter along the AMR exists even if the stars with the same orbits areselected. We examine simple extension of one-zone GCE models whichaccount for inhomogeneity in the effective yield and inhomogeneous starformation rate in the Galaxy. Both extensions of the one-zone GCE modelcannot account for the scatter in age - [Fe/H] - [Ca/Fe] relationsimultaneously. We conclude, therefore, that the scatter along the thindisc AMR is an essential feature in the formation and evolution of theGalaxy. The AMR for thick disc stars shows that the star formationterminated 8 Gyr ago in the thick disc. As already reported by Grattonet al. (\cite{Gratton_et.al.2000}) and Prochaska et al.(\cite{Prochaska_et.al.2000}), thick disc stars are more Ca-rich thanthin disc stars with the same [Fe/H]. We find that thick disc stars showa vertical abundance gradient. These three facts, the AMR, verticalgradient, and [Ca/Fe]-[Fe/H] relation, support monolithic collapseand/or accretion of satellite dwarf galaxies as likely thick discformation scenarios. Tables 2 and 3 are only available in electronicform at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)or via http:/ /cdsweb.u-strasbg.fr/ cgi-bin/qcat?J/ A+A/394/927

The C and N abundances in disk stars
Abundance analysis of carbon and nitrogen has been performed for asample of 90 F and G type main-sequence disk stars with a metallicityrange of -1.0 < [Fe/H] <+0.2 using the \ion{C} i and N I lines. Weconfirm a moderate carbon excess in the most metal-poor disk dwarfsfound in previous investigations. Our results suggest that carbon isenriched by superwinds of metal-rich massive stars at the beginning ofthe disk evolution, while a significant amount of carbon is contributedby low-mass stars in the late stage. The observed behavior of [N/Fe] isabout solar in the disk stars, irrespective of the metallicity. Thisresult suggests that nitrogen is produced mostly by intermediate-massstars. Based on observations carried out at National Astrono- micalObservatories (Xinglong, China).

Europium abundances in F and G disk dwarfs
Europium abundances for 74 F and G dwarf stars of the galactic disk havebeen determined from the 4129.7 Å Eu II line. The stars wereselected from the sample of Edvardsson et al. (1993) and [Eu/Fe] shows asmaller scatter and a slightly weaker trend with [Fe/H] than found byWoolf et al. (1995). The data of the two analyses are homogenized andmerged. We also discuss the adopted effective temperature scale. Basedon observations carried out at the European Southern Observatory, LaSilla, Chile. Tables 2 and 6 are only available in electronic form atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcal?J/A+A/381/500

The abundance distribution of elements captured by neutrons in metal-poor stars
Based on our model to compute the heavy element abundances in metal-poorstars, the authors study the heavy-element abundance distributions in 21metal-poor stars published in 1999. The results show that the heavierelements agree well with the observed data, but the lighter elementsdeviate from them, and this further shows that the heavier elementabundances from different nucleosynthesis processes in metal-poorsurroundings are similar to those from corresponding processes in thesolar system but the contribution ratios are different, and the lighterelement abundances deviate from that of the solar system. At the sametime the results suggest the nucleosynthesis sites of the lighter andheavier elements are different, namely they have differentnucleosynthesis mechanisms. In this paper, the authors especiallydiscuss the influence of the observed abundance errors on the componentcoefficients of different nucleosynthesis processes.

Lithium abundances for 185 main-sequence stars: Galactic evolution and stellar depletion of lithium
We present a survey of lithium abundances in 185 main-sequence fieldstars with 5600 <~ Teff <~ 6600 K and -1.4 <~ [Fe/H]<~ +0.2 based on new measurements of the equivalent width of thelambda 6708 Li I line in high-resolution spectra of 130 stars and areanalysis of data for 55 stars from Lambert et al. (\cite{Lambert91}).The survey takes advantage of improved photometric and spectroscopicdeterminations of effective temperature and metallicity as well as massand age derived from Hipparcos absolute magnitudes, offering anopportunity to investigate the behaviour of Li as a function of theseparameters. An interesting result from this study is the presence of alarge gap in the log varepsilon (Li) - Teff plane, whichdistinguishes ``Li-dip'' stars like those first identified in the Hyadescluster by Boesgaard & Tripicco (\cite{Boesgaard86}) from otherstars with a much higher Li abundance. The Li-dip stars concentrate on acertain mass, which decreases with metallicity from about 1.4Msun at solar metallicity to 1.1 Msun at [Fe/H] =~-1.0. Excluding the Li-dip stars and a small group of lower mass starswith Teff < 5900 K and log varepsilon (Li) < 1.5, theremaining stars, when divided into four metallicity groups, may show acorrelation between Li abundance and stellar mass. The dispersion aroundthe log varepsilon (Li)-mass relation is about 0.2 dex below [Fe/H] =~-0.4 and 0.3 dex above this metallicity, which cannot be explained byobservational errors or differences in metallicity. Furthermore, thereis no correlation between the residuals of the log varepsilon (Li)-massrelations and stellar age, which ranges from 1.5 Gyr to about 15 Gyr.This suggests that Li depletion occurs early in stellar life and thatparameters other than stellar mass and metallicity affect the degree ofdepletion, e.g. initial rotation velocity and/or the rate of angularmomentum loss. It cannot be excluded, however, that a cosmic scatter ofthe Li abundance in the Galaxy at a given metallicity contributes to thedispersion in Li abundance. These problems make it difficult todetermine the Galactic evolution of Li from the data, but a comparisonof the upper envelope of the distribution of stars in the log varepsilon(Li) - [Fe/H] plane with recent Galactic evolutionary models by Romanoet al. (\cite{Romano99}) suggests that novae are a major source for theLi production in the Galactic disk; their occurrence seems to be theexplanation for the steep increase of Li abundance at [Fe/H] =~ -0.4.Based on observations carried out at Beijing Astronomical Observatory(Xinglong, PR China) and European Southern Observatory, La Silla, Chile.Table 1 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/371/943 and athttp://www.edpsciences.org

Abundance analysis in the mildly metal-poor stars.
Not Available

Chemical composition of 90 F and G disk dwarfs
High resolution, high S/N spectra have been obtained for a sample of 90F and G main-sequence disk stars covering the metallicity range -1.0< [Fe/H] < +0.1, and have been analysed in a parallel way to thework of Edvardsson et al. (\cite{Edvardsson93a}) in order to re-inspecttheir results and to reveal new information on the chemical evolution ofthe Galactic disk. Compared to Edvardsson et al. the present studyincludes several improvements. Effective temperatures are based on theAlonso et al. (\cite{Alonso96}) calibration of color indices by theinfrared flux method and surface gravities are calculated from Hipparcosparallaxes, which also allow more accurate ages to be calculated from acomparison of M_V and T_eff with isochrones. In addition, more reliablekinematical parameters are derived from Hipparcos distances and propermotions in combination with accurate radial velocities. Finally, alarger spectral coverage, 5600 - 8800 Ä, makes it possible toimprove the abundance accuracy by studying more lines and to discussseveral elements not included in the work of Edvardsson et al. Thepresent paper provides the data and discusses some general results ofthe abundance survey. A group of stars in the metallicity range of -1.0< [Fe/H] < -0.6 having a small mean Galactocentric distance in thestellar orbits, R_m < 7 kpc, are shown to be older than the otherdisk stars and probably belong to the thick disk. Excluding these stars,a slight decreasing trend of [Fe/H] with increasing R_m and age isfound, but a large scatter in [Fe/H] (up to 0.5 dex) is present at agiven age and R_m. Abundance ratios with respect to Fe show, on theother hand, no significant scatter at a given [Fe/H] . The derivedtrends of O, Mg, Si, Ca, Ti, Ni and Ba as a function of [Fe/H] agreerather well with those of Edvardsson et al., but the overabundance of Naand Al for metal-poor stars found in their work is not confirmed.Furthermore, the Galactic evolution of elements not included inEdvardsson et al., K, V and Cr, is studied. It is concluded that theterms ``alpha elements" and ``iron-peak elements" cannot be used toindicate production and evolution by specific nucleosynthesis processes;each element seems to have a unique enrichment history. Based onobservations carried out at the Beijing Astronomical Observatory,Xinglong, PR China.}\fnmsep\thanks{ Tables~3, 4 and 5 are only availablein electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.htmlor\protect\\ http://www.edpsciences.org

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Pegasus
Right ascension:22h43m50.72s
Declination:+03°53'12.6"
Apparent magnitude:7.431
Distance:42.265 parsecs
Proper motion RA:150.6
Proper motion Dec:332.4
B-T magnitude:8.021
V-T magnitude:7.48

Catalogs and designations:
Proper Names
HD 1989HD 215257
TYCHO-2 2000TYC 571-1064-1
USNO-A2.0USNO-A2 0900-20216797
HIPHIP 112229

→ Request more catalogs and designations from VizieR