Contents
Images
Upload your image
DSS Images Other Images
Related articles
Halo Star Streams in the Solar Neighborhood We have assembled a sample of halo stars in the solar neighborhood tolook for halo substructure in velocity and angular momentum space. Oursample (231 stars) includes red giants, RR Lyrae variable stars, and redhorizontal branch stars within 2.5 kpc of the Sun with [Fe/H] less than-1.0. It was chosen to include stars with accurate distances, spacevelocities, and metallicities, as well as well-quantified errors. Withour data set, we confirm the existence of the streams found by Helmi andcoworkers, which we refer to as the H99 streams. These streams have adouble-peaked velocity distribution in the z-direction (out of theGalactic plane). We use the results of modeling of the H99 streams byHelmi and collaborators to test how one might use vz velocityinformation and radial velocity information to detect kinematicsubstructure in the halo. We find that detecting the H99 streams withradial velocities alone would require a large sample (e.g.,approximately 150 stars within 2 kpc of the Sun and within 20° ofthe Galactic poles). In addition, we use the velocity distribution ofthe H99 streams to estimate their age. From our model of the progenitorof the H99 streams, we determine that it was accreted between 6 and 9Gyr ago. The H99 streams have [α/Fe] abundances similar to otherhalo stars in the solar neighborhood, suggesting that the gas thatformed these stars were enriched mostly by Type II supernovae. We havealso discovered in angular momentum space two other possiblesubstructures, which we refer to as the retrograde and progradeoutliers. The retrograde outliers are likely to be halo substructure,but the prograde outliers are most likely part of the smooth halo. Theretrograde outliers have significant structure in the vφdirection and show a range of [α/Fe], with two having low[α/Fe] for their [Fe/H]. The fraction of substructure stars in oursample is between 5% and 7%. The methods presented in this paper can beused to exploit the kinematic information present in future largedatabases like RAVE, SDSS-II/SEGUE, and Gaia.
| Kinematics of Metal-poor Stars in the Galaxy. II. Proper Motions for a Large Nonkinematically Selected Sample We present a revised catalog of 2106 Galactic stars, selected withoutkinematic bias and with available radial velocities, distance estimates,and metal abundances in the range -4.0<=[Fe/H]<=0.0. This updateof the 1995 Beers & Sommer-Larsen catalog includes newly derivedhomogeneous photometric distance estimates, revised radial velocitiesfor a number of stars with recently obtained high-resolution spectra,and refined metallicities for stars originally identified in the HKobjective-prism survey (which account for nearly half of the catalog)based on a recent recalibration. A subset of 1258 stars in this cataloghave available proper motions based on measurements obtained with theHipparcos astrometry satellite or taken from the updated AstrographicCatalogue (second epoch positions from either the Hubble Space TelescopeGuide Star Catalog or the Tycho Catalogue), the Yale/San Juan SouthernProper Motion Catalog 2.0, and the Lick Northern Proper Motion Catalog.Our present catalog includes 388 RR Lyrae variables (182 of which arenewly added), 38 variables of other types, and 1680 nonvariables, withdistances in the range 0.1 to 40 kpc.
| Kinematics of Metal-poor Stars in the Galaxy. III. Formation of the Stellar Halo and Thick Disk as Revealed from a Large Sample of Nonkinematically Selected Stars We present a detailed analysis of the space motions of 1203solar-neighborhood stars with metal abundances [Fe/H]<=-0.6, on thebasis of a catalog, of metal-poor stars selected without kinematic biasrecently revised and supplemented by Beers et al. This sample, havingavailable proper motions, radial velocities, and distance estimates forstars with a wide range of metal abundances, is by far the largest suchcatalog to be assembled to date. We show that the stars in our samplewith [Fe/H]<=-2.2, which likely represent a ``pure'' halo component,are characterized by a radially elongated velocity ellipsoid(σU,σV,σW)=(141+/-11,106+/-9, 94+/-8) km s-1 and small prograde rotation=30 to 50 km s-1, consistent withprevious analysis of this sample by Beers and Sommer-Larsen based onradial velocity information alone. In contrast to the previous analysis,we find a decrease in with increasingdistance from the Galactic plane for stars that are likely to be membersof the halo population(Δ/Δ|Z|=-52+/-6 km s-1kpc-1), which may represent the signature of a dissipativelyformed flattened inner halo. Unlike essentially all previouskinematically selected catalogs, the metal-poor stars in our sampleexhibit a diverse distribution of orbital eccentricities, e, with noapparent correlation between [Fe/H] and e. This demonstrates, clearlyand convincingly, that the evidence offered in 1962 by Eggen,Lynden-Bell, & Sandage for a rapid collapse of the Galaxy, anapparent correlation between the orbital eccentricity of halo stars withmetallicity, is basically the result of their proper-motion selectionbias. However, even in our nonkinematically selected sample, we haveidentified a small concentration of high-e stars at [Fe/H]~-1.7, whichmay originate, in part, from infalling gas during the early formation ofthe Galaxy. We find no evidence for an additional thick disk componentfor stellar abundances [Fe/H]<=-2.2. The kinematics of theintermediate-abundance stars close to the Galactic plane are, in part,affected by the presence of a rapidly rotating thick disk component with ~=200 km s-1 (with a verticalvelocity gradient on the order ofΔ/Δ|Z|=-30+/-3 km s-1kpc-1) and velocity ellipsoid (σU,σV, σW)=(46+/-4, 50+/-4, 35+/-3) kms-1. The fraction of low-metallicity stars in the solarneighborhood that are members of the thick disk population is estimatedas ~10% for -2.2<[Fe/H]<=-1.7 and ~30% for -1.7<[Fe/H]<=-1.We obtain an estimate of the radial scale length of the metal-weak thickdisk of 4.5+/-0.6 kpc. We also analyze the global kinematics of thestars constituting the halo component of the Galaxy. The outer part ofthe halo, which we take to be represented by local stars on orbitsreaching more than 5 kpc from the Galactic plane, exhibits no systematicrotation. In particular, we show that previous suggestions of thepresence of a ``counter-rotating high halo'' are not supported by ouranalysis. The density distribution of the outer halo is nearly sphericaland exhibits a power-law profile that is accurately described asρ~R-3.55+/-0.13. The inner part of the halo ischaracterized by a prograde rotation and a highly flattened densitydistribution. We find no distinct boundary between the inner and outerhalo. We confirm the clumping in angular-momentum phase space of a smallnumber of local metal-poor stars noted in 1999 by Helmi et al. We alsoidentify an additional elongated feature in angular-momentum phase spaceextending from the clump to regions with high azimuthal rotation. Thenumber of members in the detected clump is not significantly increasedfrom that reported by Helmi et al., even though the total number of thesample stars we consider is almost triple that of the previousinvestigation. We conclude that the fraction of halo stars that may havearisen from the precursor object of this clump may be smaller than 10%of the present Galactic halo, as previously suggested. The implicationsof our results for the formation of the Galaxy are discussed, inparticular in the context of the currently favored cold dark mattertheory of hierarchical galaxy formation.
| Mining in the HIPPARCOS raw data The Hipparcos solutions flagged as unreliable after the completion ofthe standard data processing have been systematically revisited in thelight of additional information, primarily related to theirmultiplicity. In many cases improved solutions have been obtained,yielding at the same time an Hipparcos based separation and positionangle and a better astrometric solution for the system. The principlesapplied in this reprocessing are explained and more than a hundred newsolutions with absolute and relative astrometry are presented anddiscussed. Tables 1 to 7 are also available in electronic form at theCDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html
| Ca II H and K Photometry on the UVBY System. III. The Metallicity Calibration for the Red Giants New photometry on the uvby Ca system is presented for over 300 stars.When combined with previous data, the sample is used to calibrate themetallicity dependence of the hk index for cooler, evolved stars. Themetallicity scale is based upon the standardized merger of spectroscopicabundances from 38 studies since 1983, providing an overlap of 122evolved stars with the photometric catalog. The hk index producesreliable abundances for stars in the [Fe/H] range from -0.8 to -3.4,losing sensitivity among cooler stars due to saturation effects athigher [Fe/H], as expected.
| Kinematics and Metallicity of Stars in the Solar Region Several samples of nearby stars with the most accurate astrometric andphotometric parameters are searched for clues to their evolutionaryhistory. The main samples are (1) the main-sequence stars with b - ybetween 0.29 and 0.59 mag (F3 to K1) in the Yale parallax catalog, (2) agroup of high-velocity subgiants studied spectroscopically by Ryan &Lambert, and (3) high-velocity main-sequence stars in the extensiveinvestigation by Norris, Bessel, & Pickles. The major conclusionsare as follows: (1) The oldest stars (halo), t >= 10-12 Gyr, haveV-velocities (in the direction of Galactic rotation and referred to theSun) in the range from about -50 to -800 km s^-1 and have aheavy-element abundance [Fe/H] of less than about -0.8 dex. The agerange of these objects depends on our knowledge of globular clusterages, but if age is correlated with V-velocity, the youngest may be M22and M28 (V ~ -50 km s^-1) and the oldest NGC 3201 (V ~ -500 km s^-1) andassorted field stars. (2) The old disk population covers the large agerange from about 2 Gyr (Hyades, NGC 752) to 10 or 12 Gyr (Arcturusgroup, 47 Tuc), but the lag (V) velocity is restricted to less thanabout 120 km s^-1 and [Fe/H] >= -0.8 or -0.9 dex. The [Fe/H] ~ -0.8dex division between halo and old disk, near t ~ 10-12 Gyr, is marked bya change in the character of the CN index (C_m) and of the blanketingparameter K of the DDO photometry. (3) The young disk population, t <2 Gyr, is confined exclusively to a well-defined area of the (U, V)velocity plane. The age separating young and old disk stars is also thatseparating giant evolution of the Hyades (near main-sequence luminosity)and M67 (degenerate helium cores and a large luminosity rise) kinds. Thetwo disk populations are also separated by such indexes as the g-indexof Geveva photometry. There appears to be no obvious need to invokeexogeneous influences to understand the motion and heavy-elementabundance distributions of the best-observed stars near the Sun.Individual stars of special interest include the parallax star HD 55575,which may be an equal-component binary, and the high-velocity star HD220127, with a well-determined space velocity near 1000 km s^-1.
| Kinematics of metal-poor stars in the galaxy We discuss the kinematic properties of a sample of 1936 Galactic stars,selected without kinematic bias, and with abundances (Fe/H) is less thanor equal to -0.6. The stars selected for this study all have measuredradial velocities, and the majority have abundances determined fromspectroscopic or narrow-/intermediate-band photometric techniques. Incontrast to previous examinations of the kinematics of the metal-poorstars in the Galaxy, our sample contains large numbers of stars that arelocated at distances in excess of 1 kpc from the Galactic plane. Thus, amuch clearer picture of the nature of the metal-deficient populations inthe Galaxy can now be drawn.
| Astrometric and astrophysical discontinuities between the galactic old disk and halo stellar populations Intermediate band, RI, and DDO photometry of the weak-lined stars in thefirst three volumes of the Michigan catalogs of spectral type arediscussed on the basis of luminosity and heavy element abundance. Theinterface between the old disk (Fe/H greater than -0.8 dex) and halo(Fe/H less than -1.2 dex) populations represents discontinuities in boththe stellar motions and the stellar physics. The CN strengths of bothevolved and unevolved halo stars decrease with decreasing temperature,in a mirror image of the increase with decreasing temperature for thedisk objects. The result for the halo giants has been attributed to deepmixing in the stellar atmospheres but the similar result for unevolveddwarfs indicates a difference in formation rather than in evolutionaryprocess of the two populations.
| Population studies. II - Kinematics as a function of abundance and galactocentric position for (Fe/H) of -0.6 or less A catalog is presented of some 1200 Galactic objects which have radialvelocities and (Fe/H) abundances of -0.6 or less. These data areanalyzed to yield information on the kinematic properties of the olderpopulations of the Galaxy and on the interdependence between kinematicsand abundance. It is found that the kinematics of the availablekinematically selected stars differ from those of the nonkinematicallyselected objects. No evidence is found for any significant difference inthe kinematic properties of the various halo subgroups, nor for anydependence of kinematics on abundance. While the rotation of the halo issmall at about 37 km/s for (Fe/H) of -1.2 or less, it rises quickly forhigher abundances to a value of about 160 km/s at (Fe/H) = 0.6. Objectsin the abundance range -0.9 to -0.6 appear to belong predominantly to apopulation possessing the kinematic characteristics of a thick disk. Theimplications of these findings for the suggestion that globular clustersbelong to the same population as the noncluster objects, for the originof the thick disk, and for the mass of the Galaxy are discussed.
| Population studies. I - The Bidelman-MacConnell 'weak-metal' stars BRVI and DDO photometry are presented for 309 Bidelman-MacConnell'weak-metal' stars. Radial velocities are calculated for most of thestars having Fe/H abundances of no more than -0.8. The photometricobservations were carried out using the 0.6-meter and 1.0-metertelescopes of the Siding Spring Observatory. Photometric taxonomy wasused to classify the stars as dwarfs, giants, red-horizontal branchstars, and ultraviolet-bright stars, respectively. It is found that 35percent of the stars are giants; 50 percent are dwarfs; and 5 percentbelong to the red-horizontal branch group. The role of selection effectsin investigations of the formation of the Galaxy is discussed on thebasis of the photometric observations and the observational constraintsproposed by Eggen et al. (1962).
|
Submit a new article
Related links
Submit a new link
Member of following groups:
|
Observation and Astrometry data
Constellation: | Horologium |
Right ascension: | 02h58m42.58s |
Declination: | -48°43'56.5" |
Apparent magnitude: | 9.707 |
Proper motion RA: | -4.7 |
Proper motion Dec: | 16.2 |
B-T magnitude: | 10.878 |
V-T magnitude: | 9.804 |
Catalogs and designations:
|