Contents
Images
Upload your image
DSS Images Other Images
Related articles
Catalogue of averaged stellar effective magnetic fields. I. Chemically peculiar A and B type stars This paper presents the catalogue and the method of determination ofaveraged quadratic effective magnetic fields < B_e > for 596 mainsequence and giant stars. The catalogue is based on measurements of thestellar effective (or mean longitudinal) magnetic field strengths B_e,which were compiled from the existing literature.We analysed the properties of 352 chemically peculiar A and B stars inthe catalogue, including Am, ApSi, He-weak, He-rich, HgMn, ApSrCrEu, andall ApSr type stars. We have found that the number distribution of allchemically peculiar (CP) stars vs. averaged magnetic field strength isdescribed by a decreasing exponential function. Relations of this typehold also for stars of all the analysed subclasses of chemicalpeculiarity. The exponential form of the above distribution function canbreak down below about 100 G, the latter value representingapproximately the resolution of our analysis for A type stars.Table A.1 and its references are only available in electronic form atthe CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/407/631 and Tables 3 to 9are only available in electronic form at http://www.edpsciences.org
| A search for the age-dependency of AP star parameters Some observational data of the sample of the magnetic chemicallypeculiar stars (MCP stars) are investigated statistically. For the MCPstars of spectral types later than A2, both the frequency distributionand the (R) sin i-values suggest the existence of a linear relationbetween stellar diameter and rotation period. The MCP stars of spectraltypes earlier than B9 show an overpopulation of small (R) sin i whichmay indicate the existence of a second group with smaller radius in thissample. The equatorially symmetric rotator is used as the magneticmodel. With respect to its temporal behavior, the effective magneticfield is separated into dipolar and quadrupolar contribution. Both signsof the axisymmetric quadrupole moment appear with equal frequency. Thedipole moment which produces the amplitude of the Beff(t) curve formsfor longer periods two groups which are separated by a distinct gap.Both of the groups exhibit magnetic fields which are the stronger thegreater the stellar radius is, contrary to what is expected forfrozen-in fields. The dominance of magnetic curves without polarityreversal for longer-period stars is in accordance with predictions ofthe dynamo theory.
|
Submit a new article
Related links
Submit a new link
Member of following groups:
|
Observation and Astrometry data
Constellation: | Andromeda |
Right ascension: | 00h28m16.65s |
Declination: | +28°03'37.8" |
Apparent magnitude: | 7.827 |
Distance: | 95.147 parsecs |
Proper motion RA: | -34.3 |
Proper motion Dec: | -2.4 |
B-T magnitude: | 8.505 |
V-T magnitude: | 7.883 |
Catalogs and designations:
|