Home     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Astro Photo     The Collection     Forum     Blog New!     FAQ     Login  
→ Adopt this star  

HD 122767


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Local kinematics of K and M giants from CORAVEL/Hipparcos/Tycho-2 data. Revisiting the concept of superclusters
The availability of the Hipparcos Catalogue has triggered many kinematicand dynamical studies of the solar neighbourhood. Nevertheless, thosestudies generally lacked the third component of the space velocities,i.e., the radial velocities. This work presents the kinematic analysisof 5952 K and 739 M giants in the solar neighbourhood which includes forthe first time radial velocity data from a large survey performed withthe CORAVEL spectrovelocimeter. It also uses proper motions from theTycho-2 catalogue, which are expected to be more accurate than theHipparcos ones. An important by-product of this study is the observedfraction of only 5.7% of spectroscopic binaries among M giants ascompared to 13.7% for K giants. After excluding the binaries for whichno center-of-mass velocity could be estimated, 5311 K and 719 M giantsremain in the final sample. The UV-plane constructed from these datafor the stars with precise parallaxes (σπ/π≤20%) reveals a rich small-scale structure, with several clumpscorresponding to the Hercules stream, the Sirius moving group, and theHyades and Pleiades superclusters. A maximum-likelihood method, based ona Bayesian approach, has been applied to the data, in order to make fulluse of all the available stars (not only those with precise parallaxes)and to derive the kinematic properties of these subgroups. Isochrones inthe Hertzsprung-Russell diagram reveal a very wide range of ages forstars belonging to these groups. These groups are most probably relatedto the dynamical perturbation by transient spiral waves (as recentlymodelled by De Simone et al. \cite{Simone2004}) rather than to clusterremnants. A possible explanation for the presence of younggroup/clusters in the same area of the UV-plane is that they have beenput there by the spiral wave associated with their formation, while thekinematics of the older stars of our sample has also been disturbed bythe same wave. The emerging picture is thus one of dynamical streamspervading the solar neighbourhood and travelling in the Galaxy withsimilar space velocities. The term dynamical stream is more appropriatethan the traditional term supercluster since it involves stars ofdifferent ages, not born at the same place nor at the same time. Theposition of those streams in the UV-plane is responsible for the vertexdeviation of 16.2o ± 5.6o for the wholesample. Our study suggests that the vertex deviation for youngerpopulations could have the same dynamical origin. The underlyingvelocity ellipsoid, extracted by the maximum-likelihood method afterremoval of the streams, is not centered on the value commonly acceptedfor the radial antisolar motion: it is centered on < U > =-2.78±1.07 km s-1. However, the full data set(including the various streams) does yield the usual value for theradial solar motion, when properly accounting for the biases inherent tothis kind of analysis (namely, < U > = -10.25±0.15 kms-1). This discrepancy clearly raises the essential questionof how to derive the solar motion in the presence of dynamicalperturbations altering the kinematics of the solar neighbourhood: doesthere exist in the solar neighbourhood a subset of stars having no netradial motion which can be used as a reference against which to measurethe solar motion?Based on observations performed at the Swiss 1m-telescope at OHP,France, and on data from the ESA Hipparcos astrometry satellite.Full Table \ref{taba1} is only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/430/165}

Kinematics of chromospherically active binaries and evidence of an orbital period decrease in binary evolution
The kinematics of 237 chromospherically active binaries (CABs) werestudied. The sample is heterogeneous with different orbits andphysically different components from F to M spectral-type main-sequencestars to G and K giants and supergiants. The computed U, V, W spacevelocities indicate that the sample is also heterogeneous in velocityspace. That is, both kinematically younger and older systems exist amongthe non-evolved main sequence and the evolved binaries containing giantsand subgiants. The kinematically young (0.95 Gyr) subsample (N= 95),which is formed according to the kinematical criteria of moving groups,was compared with the rest (N= 142) of the sample (3.86 Gyr) toinvestigate any observational clues of binary evolution. Comparing theorbital period histograms between the younger and older subsamples,evidence was found supporting the finding of Demircan that the CABs losemass (and angular momentum) and evolve towards shorter orbital periods.The evidence of mass loss is noticeable on the histograms of the totalmass (Mh+Mc), which is compared between theyounger (only N= 53 systems available) and older subsamples (only N= 66systems available). The orbital period decrease during binary evolutionis found to be clearly indicated by the kinematical ages of 6.69, 5.19and 3.02 Gyr which were found in the subsamples according to the periodranges of logP<= 0.8, 0.8 < logP<= 1.7 and 1.7 < logP<=3, respectively, among the binaries in the older subsample.

Spectroscopic binary orbits from photoelectric radial velocities. Paper 169: HD 21771/2
Not Available

The 75th Name-List of Variable Stars
We present the next regular Name-List of variable stars containinginformation on 916 variable stars recently designated in the system ofthe General Catalogue of Variable Stars.

Rotational Velocities of Late-Type Stars
A calibration based on the results of Gray has been used to determineprojected rotational velocities for 133 bright stars with spectral typesof F, G, or K, most of which appear in {\it The Bright Star Catalogue}.The vast majority have {\it v} sin {\it i} $\leq$ 10 km s$^{-1}$ and,thus, are slow rotators. With the new calibration, projected rotationalvelocities have been determined for a sample of 111 late-type stars,most of which are chromospherically active. Some of the stars have hadtheir rotational velocities measured for the first time. (SECTION:Stars)

BVRI photometry of spectroscopic binaries
Not Available

An Automated Search for Variability in Chromospherically Active Stars
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995AJ....110.2926H&db_key=AST

Spectroscopic binary orbits from photoelectric radial velocities. Paper 124: HD 176695
Not Available

Chromospheric activity in G and K giants: the spectroscopic data base
I present high-resolution CCD spectra of CaII H and K emission lines of59 evolved stars of spectral type G and K and luminosity Class III,III-IV, and IV. This includes active stars like RS CVn binaries but alsoactive and inactive single stars. Most of the objects were observed forthe first time and several were discovered to be chromosphericallyactive. Spectra for ten stars of luminosity Class V are also given.

Chromospheric activity in G and K giants and their rotation-activity relation
We obtained high-resolution CCD spectra of Ca II H and K emission linesof 59 evolved stars of spectral type G and K and luminosity class III,III-IV, and IV. Our sample includes active stars like RS CVn binariesbut also active and inactive single stars. Whenever possible wedetermine absolute emission line surface fluxes and use them,supplemented by previously published fluxes from high-resolutionspectra, to quantify the rotation-activity relation for evolved stars.We find that the Ca II surface fluxes from evolved stars scale linearlywith stellar rotational velocity and that the flux from the cooler starsdepends stronger upon rotation than the flux from the hotter stars, inagreement with previous findings for main-sequence stars. However, largescatter indicates that rotational velocity might not be the onlyrelevant parameter. We also present some evidence for the existence of a'basal' flux for evolved stars that scales approximately with the eightpower of the effective surface temperature.

Spectroscopic binary orbits from photoelectric radial velocities. A synopsis of papers 1-100
Not Available

Photometry of 50 suspected variable stars
Fifty stars have been chosen as suspected variable stars and analyzedfor variability. A large portion of this sample are stars that areeither proved active chromosphere stars or are candidates for suchactivity. The photometric data base consists of differential Vmeasurements of the Vanderbilt 16 inch (41 cm) automatic photoelectrictelescope and 25 observers at 26 observatories worldwide. Publishedphotometric data have also been utilized, with proper adjustments madeto ensure that all magnitudes are differential. Searches for photometricperiod, amplitudes, and times of minimum light showed 68 percent of thesample to be photometrically variable with periods found for 34. Twostars were deemed norvariable for the period of observation. Conclusivestatements could not be made concerning the photometric variability ofthe 14 remaining stars.

What is a discovery?
Not Available

Spectroscopic binary orbits from photoelectric radial velocities. Paper 83: HD 122767
Not Available

Radial velocities of certain stars previously measured at the David Dunlap Observatory
Not Available

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Bootes
Right ascension:14h03m15.73s
Declination:+24°35'50.8"
Apparent magnitude:7.962
Distance:1020.408 parsecs
Proper motion RA:14
Proper motion Dec:-19
B-T magnitude:9.672
V-T magnitude:8.104

Catalogs and designations:
Proper Names
HD 1989HD 122767
TYCHO-2 2000TYC 2006-326-1
USNO-A2.0USNO-A2 1125-06866446
HIPHIP 68660

→ Request more catalogs and designations from VizieR