Home     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Astro Photo     The Collection     Forum     Blog New!     FAQ     Login  
→ Adopt this star  

HD 114037


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Local kinematics of K and M giants from CORAVEL/Hipparcos/Tycho-2 data. Revisiting the concept of superclusters
The availability of the Hipparcos Catalogue has triggered many kinematicand dynamical studies of the solar neighbourhood. Nevertheless, thosestudies generally lacked the third component of the space velocities,i.e., the radial velocities. This work presents the kinematic analysisof 5952 K and 739 M giants in the solar neighbourhood which includes forthe first time radial velocity data from a large survey performed withthe CORAVEL spectrovelocimeter. It also uses proper motions from theTycho-2 catalogue, which are expected to be more accurate than theHipparcos ones. An important by-product of this study is the observedfraction of only 5.7% of spectroscopic binaries among M giants ascompared to 13.7% for K giants. After excluding the binaries for whichno center-of-mass velocity could be estimated, 5311 K and 719 M giantsremain in the final sample. The UV-plane constructed from these datafor the stars with precise parallaxes (σπ/π≤20%) reveals a rich small-scale structure, with several clumpscorresponding to the Hercules stream, the Sirius moving group, and theHyades and Pleiades superclusters. A maximum-likelihood method, based ona Bayesian approach, has been applied to the data, in order to make fulluse of all the available stars (not only those with precise parallaxes)and to derive the kinematic properties of these subgroups. Isochrones inthe Hertzsprung-Russell diagram reveal a very wide range of ages forstars belonging to these groups. These groups are most probably relatedto the dynamical perturbation by transient spiral waves (as recentlymodelled by De Simone et al. \cite{Simone2004}) rather than to clusterremnants. A possible explanation for the presence of younggroup/clusters in the same area of the UV-plane is that they have beenput there by the spiral wave associated with their formation, while thekinematics of the older stars of our sample has also been disturbed bythe same wave. The emerging picture is thus one of dynamical streamspervading the solar neighbourhood and travelling in the Galaxy withsimilar space velocities. The term dynamical stream is more appropriatethan the traditional term supercluster since it involves stars ofdifferent ages, not born at the same place nor at the same time. Theposition of those streams in the UV-plane is responsible for the vertexdeviation of 16.2o ± 5.6o for the wholesample. Our study suggests that the vertex deviation for youngerpopulations could have the same dynamical origin. The underlyingvelocity ellipsoid, extracted by the maximum-likelihood method afterremoval of the streams, is not centered on the value commonly acceptedfor the radial antisolar motion: it is centered on < U > =-2.78±1.07 km s-1. However, the full data set(including the various streams) does yield the usual value for theradial solar motion, when properly accounting for the biases inherent tothis kind of analysis (namely, < U > = -10.25±0.15 kms-1). This discrepancy clearly raises the essential questionof how to derive the solar motion in the presence of dynamicalperturbations altering the kinematics of the solar neighbourhood: doesthere exist in the solar neighbourhood a subset of stars having no netradial motion which can be used as a reference against which to measurethe solar motion?Based on observations performed at the Swiss 1m-telescope at OHP,France, and on data from the ESA Hipparcos astrometry satellite.Full Table \ref{taba1} is only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/430/165}

Evolved GK stars near the sun. I - The old disk population
A sample of nearly two thousand GK giants with intermediate band, (R,I),DDO and Geneva photometry has been assembled. Astrometric data is alsoavailable for most of the stars. The some 800 members of the old diskpopulation in the sample yield accurate luminosities (from two sources),reddening values and chemical abundances from calibrations of thephotometric parameters. Less than one percent of the objects arepeculiar in the sense that the flux distribution is abnormal. Thepeculiarity is signaled by strong CH (and Ba II) and weak CH. The CH+stars are all spectroscopic binaries, probably with white dwarfcompanions, whereas the CH- stars are not. A broad absorption band,centered near 3500 A, is found in the CH+ stars whereas the CH- objectshave a broad emission feature in the same region. The intensity of theseabsorptions and emissions are independent of the intensity of abnormalspectral features. Ten percent of the old disk sample have a heavyelement abundance from one and a half to three times the solar value.The distribution of the heavy element abundances is nearly a normal onewith a peak near solar abundance and ranges three times to one sixthsolar. The distribution of the (U, V) velocities is independent of theheavy element abundance and does not appear to be random. Ten percent ofthe old disk stars show a CN anomaly, equally divided between CN strongand CN weak. Several stars of individual astrometric or astrophysicalimportance are isolated.

Optical identifications of IRAS point sources - The Fornax, Hydra I and Coma clusters
Optical identifications are presented for 66 IRAS point sources in theregion of the Fornax cluster of galaxies, 106 IRAS point sources in theregion of the Hydra I cluster of galaxies (Abell 1060), and 59 IRASpoint sources in the region of the Coma cluster of galaxies (Abell1656). Eight other sources in Hydra I do not have optical counterpartsand are very probably due to IR cirrus. Twenty-three (35 percent) of theFornax sources are associated with stars and 43 (65 percent) withgalaxies; 48 (42 percent) of the Hydra I sources are associated withstars and 58 (51 percent) with galaxies; 18 (31 percent) of the Comasources are associated with stars and 41 (69 percent) with galaxies. Thestellar and infrared cirrus surface density is consistent with thegalactic latitude of each field.

Photoelectric photometry of bright stars in the vicinity of the North Galactic Pole
Not Available

U, V, W velocity components for the old disk using radial velocities of 1295 stars in the three cardinal Galactic directions
New radial velocities are presented for 1295 stars chosen at random nearthe three cardinal Galactic directions of l = 180 deg, b = 0; l = 90deg, b = 0 deg; and b = 90 deg, giving the distribution in U, V, and W,respectively, from the radial velocities alone. The measurements weremade with the coude spectrograph of the Mount Wilson 100 in. Hookerreflector. The purpose of the program is to set limits on the densitynormalization in the solar neighborhood of the old thin disk, the oldthick disk, and the halo. Many more high-velocity stars are present inthe unbiased sample than expected from previous estimates of thenormalization. The data suggest the density ratios in the solarneighborhood to be about 90 percent, 10 percent, and about 0.5 percentfor the thin disk, thick disk, and halo populations, respectively.

A sample of old-disk-population red giants.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1976PASP...88..426E&db_key=AST

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Coma Berenices
Right ascension:13h07m24.68s
Declination:+26°31'26.2"
Apparent magnitude:7.615
Distance:265.957 parsecs
Proper motion RA:-113.5
Proper motion Dec:14.8
B-T magnitude:9.025
V-T magnitude:7.732

Catalogs and designations:
Proper Names
HD 1989HD 114037
TYCHO-2 2000TYC 1996-1136-1
USNO-A2.0USNO-A2 1125-06657281
HIPHIP 64034

→ Request more catalogs and designations from VizieR