Home     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Astro Photo     The Collection     Forum     Blog New!     FAQ     Login  
→ Adopt this star  

TYC 3532-1672-1


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Bayesian inference of stellar parameters and interstellar extinction using parallaxes and multiband photometry
Astrometric surveys provide the opportunity to measure the absolutemagnitudes of large numbers of stars, but only if the individualline-of-sight extinctions are known. Unfortunately, extinction is highlydegenerate with stellar effective temperature when estimated frombroad-band optical/infrared photometry. To address this problem, Iintroduce a Bayesian method for estimating the intrinsic parameters of astar and its line-of-sight extinction. It uses both photometry andparallaxes in a self-consistent manner in order to provide anon-parametric posterior probability distribution over the parameters.The method makes explicit use of domain knowledge by employing theHertzsprung-Russell Diagram (HRD) to constrain solutions and to ensurethat they respect stellar physics. I first demonstrate this method byusing it to estimate effective temperature and extinction from BVJHKdata for a set of artificially reddened Hipparcos stars, for whichaccurate effective temperatures have been estimated from high-resolutionspectroscopy. Using just the four colours, we see the expected strongdegeneracy (positive correlation) between the temperature andextinction. Introducing the parallax, apparent magnitude and the HRDreduces this degeneracy and improves both the precision (reduces theerror bars) and the accuracy of the parameter estimates, the latter byabout 35 per cent. The resulting accuracy is about 200 K in temperatureand 0.2 mag in extinction. I then apply the method to estimate theseparameters and absolute magnitudes for some 47 000 F, G, K Hipparcosstars which have been cross-matched with Two-Micron All-Sky Survey(2MASS). The method can easily be extended to incorporate the estimationof other parameters, in particular metallicity and surface gravity,making it particularly suitable for the analysis of the 109stars from Gaia.

Chromospheric Activity and Jitter Measurements for 2630 Stars on the California Planet Search
We present time series measurements of chromospheric activity for morethan 2600 main-sequence and subgiant stars on the California PlanetSearch (CPS) program with spectral types ranging from about F5V to M4Vfor main-sequence stars and from G0IV to about K5IV for subgiants. Thelarge data set of more than 44,000 spectra allows us to identify anempirical baseline floor for chromospheric activity as a function ofcolor and height above the main sequence. We define ?S as anexcess in emission in the Ca II H and K lines above the baselineactivity floor and define radial velocity jitter as a function of?S and B - V for main-sequence and subgiant stars. Although thejitter for any individual star can always exceed the baseline level, wefind that K dwarfs have the lowest level of jitter. The lack ofcorrelation between observed jitter and chromospheric activity in Kdwarfs suggests that the observed jitter is dominated by instrumental oranalysis errors and not astrophysical noise sources. Thus, given thelong-term precision for the CPS program, radial velocities are notcorrelated with astrophysical noise for chromospherically quiet K dwarfstars, making these stars particularly well suited for the highestprecision Doppler surveys. Chromospherically quiet F and G dwarfs andsubgiants exhibit higher baseline levels of astrophysical jitter than Kdwarfs. Despite the fact that the rms in Doppler velocities iscorrelated with the mean chromospheric activity, it is rare to seeone-to-one correlations between the individual time series activity andDoppler measurements, diminishing the prospects for correctingactivity-induced velocity variations in F and G dwarfs.Based on observations obtained at the Keck Observatory and LickObservatory, which are operated by the University of California.

Accurate Coordinates and 2MASS Cross Identifications for (Almost) All Gliese Catalog Star
We provide precise J2000, epoch 2000 coordinates, andcross-identifications to sources in the 2MASS Point Source Catalog fornearly all stars in the Gliese, Gliese-Jahreiss, and Woolley catalogs ofnearby stars. The only Gliese objects where we were not successful aretwo Gliese sources that are actually QSOs; two proposed companions tobrighter stars, which we believe do not exist; four stars included inone of the catalogs but identified there as only optical companions; oneprobable plate flaw; and two stars that simply remain unrecovered. Forthe 4251 recovered stars, 2693 have coordinates based on Hipparcospositions, 1549 have coordinates based on 2MASS data, and 9 havepositions from other astrometric sources. All positions have beencalculated at epoch 2000 using proper motions from the literature, whichare also given here.

A Catalog of Northern Stars with Annual Proper Motions Larger than 0.15" (LSPM-NORTH Catalog)
The LSPM catalog is a comprehensive list of 61,977 stars north of theJ2000 celestial equator that have proper motions larger than 0.15"yr-1 (local-background-stars frame). The catalog has beengenerated primarily as a result of our systematic search for high propermotion stars in the Digitized Sky Surveys using our SUPERBLINK software.At brighter magnitudes, the catalog incorporates stars and data from theTycho-2 Catalogue and also, to a lesser extent, from the All-SkyCompiled Catalogue of 2.5 million stars. The LSPM catalog considerablyexpands over the old Luyten (Luyten Half-Second [LHS] and New LuytenTwo-Tenths [NLTT]) catalogs, superseding them for northern declinations.Positions are given with an accuracy of <~100 mas at the 2000.0epoch, and absolute proper motions are given with an accuracy of ~8 masyr-1. Corrections to the local-background-stars propermotions have been calculated, and absolute proper motions in theextragalactic frame are given. Whenever available, we also give opticalBT and VT magnitudes (from Tycho-2, ASCC-2.5),photographic BJ, RF, and IN magnitudes(from USNO-B1 catalog), and infrared J, H, and Ks magnitudes(from 2MASS). We also provide an estimated V magnitude and V-J color fornearly all catalog entries, useful for initial classification of thestars. The catalog is estimated to be over 99% complete at high Galacticlatitudes (|b|>15deg) and over 90% complete at lowGalactic latitudes (|b|>15deg), down to a magnitudeV=19.0, and has a limiting magnitude V=21.0. All the northern starslisted in the LHS and NLTT catalogs have been reidentified, and theirpositions, proper motions, and magnitudes reevaluated. The catalog alsolists a large number of completely new objects, which promise to expandvery significantly the census of red dwarfs, subdwarfs, and white dwarfsin the vicinity of the Sun.Based on data mining of the Digitized Sky Surveys (DSSs), developed andoperated by the Catalogs and Surveys Branch of the Space TelescopeScience Institute (STScI), Baltimore.Developed with support from the National Science Foundation (NSF), aspart of the NASA/NSF NStars program.

Contributions to the Nearby Stars (NStars) Project: Spectroscopy of Stars Earlier than M0 within 40 Parsecs: The Northern Sample. I.
We have embarked on a project, under the aegis of the Nearby Stars(NStars)/Space Interferometry Mission Preparatory Science Program, toobtain spectra, spectral types, and, where feasible, basic physicalparameters for the 3600 dwarf and giant stars earlier than M0 within 40pc of the Sun. In this paper, we report on the results of this projectfor the first 664 stars in the northern hemisphere. These resultsinclude precise, homogeneous spectral types, basic physical parameters(including the effective temperature, surface gravity, and overallmetallicity [M/H]), and measures of the chromospheric activity of ourprogram stars. Observed and derived data presented in this paper arealso available on the project's Web site.

Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog
We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.

Photometric Measurements of the Fields of More than 700 Nearby Stars
In preparation for optical/IR interferometric searches for substellarcompanions of nearby stars, we undertook to characterize the fields ofall nearby stars visible from the Northern Hemisphere to determinesuitable companions for interferometric phase referencing. Because theKeck Interferometer in particular will be able to phase-reference oncompanions within the isoplanatic patch (30") to about 17th magnitude atK, we took images at V, r, and i that were deep enough to determine iffield stars were present to this magnitude around nearby stars using aspot-coated CCD. We report on 733 fields containing 10,629 measurementsin up to three filters (Gunn i, r and Johnson V) of nearby stars down toabout 13th magnitude at V.

Preliminary Version of the Third Catalogue of Nearby Stars
Not Available

UBVRI photoelectric photometry of high proper motion stars
UBVRI photoelectric photometry is presented for 269 late spectral type,high proper motion stars belonging to the 'Lowell Proper Motion Survey'and included in the present version of the Hipparcos Input Catalogue.The observations and data reduction are described. The external errorsobtained by comparison of the results with those obtained in otherstudies are presented.

Spectral classification of high-proper-motion stars
Spectral types have been found for about 900 stars of high proper motioncontained in the Lowell Observatory Northern Hemisphere proper-motionstar survey using all blue-region objective prism plates. The spectralclassification criteria are given. About eighty stars of largetangential velocity have been classified using slit spectrograms takenwith a 36-in. reflector. A new calibration of Luyten's absolutemagnitude vs reduced proper motion relation is made, and its dependenceon spectral type is investigated.

The nature of the Giclas +4 stars
Broadband BVRI photometry has been obtained for 130 stars in the LowellObservatory proper motion survey with color class +4. The sample iscomplete for the 75 +4 class stars between RA = 2h31m and RA = 12h20m inthe Northern Hemisphere. The absolute magnitudes and distances of thestars are estimated using the R magnitude-(R-I) relation. Most of thestars are normal late-type dwarf stars. The B-V color distribution forthe +4 class stars is similar to that for +3 class stars, suggestingthere is no significant difference between the two color classes.Several individual stars which may be subluminous or otherwise ofinterest have been identified, as have several stars within 25 pc whichare not included in published catalogs of nearby stars.

Bewegte Sterne in der Umgebung von ? Draconis
Not Available

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Hercules
Right ascension:18h10m56.27s
Declination:+49°58'16.0"
Apparent magnitude:10.028
Distance:26.781 parsecs
Proper motion RA:-7.3
Proper motion Dec:-229.2
B-T magnitude:11.551
V-T magnitude:10.154

Catalogs and designations:
Proper Names
TYCHO-2 2000TYC 3532-1672-1
USNO-A2.0USNO-A2 1350-09535979
HIPHIP 89087

→ Request more catalogs and designations from VizieR