Главная     Выжить во Вселенной    
Services
    Why to Inhabit     Top Contributors     Астрофотография     Коллекция     Форум     Blog New!     Помощь     Войти  
→ Adopt this star  

112 Psc


Оглавление

Изображения

Загрузить ваше изображение

DSS Images   Other Images


Публикации по объекту

Dwarfs in the Local Region
We present lithium, carbon, and oxygen abundance data for a sample ofnearby dwarfs-a total of 216 stars-including samples within 15 pc of theSun, as well as a sample of local close giant planet (CGP) hosts (55stars) and comparison stars. The spectroscopic data for this work have aresolution of R~60,000, a signal-to-noise ratio >150, and spectralcoverage from 475 to 685 nm. We have redetermined parameters and derivedadditional abundances (Z>10) for the CGP host and comparison samples.From our abundances for elements with Z>6 we determine the meanabundance of all elements in the CGP hosts to range from 0.1 to 0.2 dexhigher than nonhosts. However, when relative abundances ([x/Fe]) areconsidered we detect no differences in the samples. We find nodifference in the lithium contents of the hosts versus the nonhosts. Theplanet hosts appear to be the metal-rich extension of local regionabundances, and overall trends in the abundances are dominated byGalactic chemical evolution. A consideration of the kinematics of thesample shows that the planet hosts are spread through velocity space;they are not exclusively stars of the thin disk.

A spectroscopic study of the surfaces of Saturn's large satellites: H2O ice, tholins, and minor constituents
We present spectra of Saturn's icy satellites Mimas, Enceladus, Tethys,Dione, Rhea, and Hyperion, 1.0 2.5 μm, with data extending to shorter(Mimas and Enceladus) and longer (Rhea and Dione) wavelengths forcertain objects. The spectral resolution (R=λ/Δλ) ofthe data shown here is in the range 800 1000, depending on the specificinstrument and configuration used; this is higher than the resolution(R=225 at 3 μm) afforded by the Visual-Infrared Mapping Spectrometeron the Cassini spacecraft. All of the spectra are dominated by water iceabsorption bands and no other features are clearly identified. Spectraof all of these satellites show the characteristic signature ofhexagonal H2O ice at 1.65 μm. We model the leadinghemisphere of Rhea in the wavelength range 0.3 3.6 μm with the Hapkeand the Shkuratov radiative transfer codes and discuss the relativemerits of the two approaches to fitting the spectrum. In calculationswith both codes, the only components used are H2O ice, whichis the dominant constituent, and a small amount of tholin (Ice TholinII). Tholin in small quantities (few percent, depending on the mixingmechanism) appears to be an essential component to give the basic redcolor of the satellite in the region 0.3 1.0 μm. The quantity andmode of mixing of tholin that can produce the intense coloration of Rheaand other icy satellites has bearing on its likely presence in manyother icy bodies of the outer Solar System, both of high and lowgeometric albedos. Using the modeling codes, we also establish detectionlimits for the ices of CO2 (a few weight percent, dependingon particle size and mixing), CH4 (same), andNH4OH (0.5 weight percent) in our globally averaged spectraof Rhea's leading hemisphere. New laboratory spectral data forNH4OH are presented for the purpose of detection on icybodies. These limits for CO2, CH4, andNH4OH on Rhea are also applicable to the other icy satellitesfor which spectra are presented here. The reflectance spectrum ofHyperion shows evidence for a broad, unidentified absorption bandcentered at 1.75 μm.

Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs
We present a uniform catalog of stellar properties for 1040 nearby F, G,and K stars that have been observed by the Keck, Lick, and AAT planetsearch programs. Fitting observed echelle spectra with synthetic spectrayielded effective temperature, surface gravity, metallicity, projectedrotational velocity, and abundances of the elements Na, Si, Ti, Fe, andNi, for every star in the catalog. Combining V-band photometry andHipparcos parallaxes with a bolometric correction based on thespectroscopic results yielded stellar luminosity, radius, and mass.Interpolating Yonsei-Yale isochrones to the luminosity, effectivetemperature, metallicity, and α-element enhancement of each staryielded a theoretical mass, radius, gravity, and age range for moststars in the catalog. Automated tools provide uniform results and makeanalysis of such a large sample practical. Our analysis method differsfrom traditional abundance analyses in that we fit the observed spectrumdirectly, rather than trying to match equivalent widths, and wedetermine effective temperature and surface gravity from the spectrumitself, rather than adopting values based on measured photometry orparallax. As part of our analysis, we determined a new relationshipbetween macroturbulence and effective temperature on the main sequence.Detailed error analysis revealed small systematic offsets with respectto the Sun and spurious abundance trends as a function of effectivetemperature that would be inobvious in smaller samples. We attempted toremove these errors by applying empirical corrections, achieving aprecision per spectrum of 44 K in effective temperature, 0.03 dex inmetallicity, 0.06 dex in the logarithm of gravity, and 0.5 kms-1 in projected rotational velocity. Comparisons withprevious studies show only small discrepancies. Our spectroscopicallydetermined masses have a median fractional precision of 15%, but theyare systematically 10% higher than masses obtained by interpolatingisochrones. Our spectroscopic radii have a median fractional precisionof 3%. Our ages from isochrones have a precision that variesdramatically with location in the Hertzsprung-Russell diagram. We planto extend the catalog by applying our automated analysis technique toother large stellar samples.

Chromospheric Ca II Emission in Nearby F, G, K, and M Stars
We present chromospheric Ca II H and K activity measurements, rotationperiods, and ages for ~1200 F, G, K, and M type main-sequence stars from~18,000 archival spectra taken at Keck and Lick Observatories as a partof the California and Carnegie Planet Search Project. We have calibratedour chromospheric S-values against the Mount Wilson chromosphericactivity data. From these measurements we have calculated medianactivity levels and derived R'HK, stellar ages,and rotation periods from general parameterizations for 1228 stars,~1000 of which have no previously published S-values. We also presentprecise time series of activity measurements for these stars.Based on observations obtained at Lick Observatory, which is operated bythe University of California, and on observations obtained at the W. M.Keck Observatory, which is operated jointly by the University ofCalifornia and the California Institute of Technology. The KeckObservatory was made possible by the generous financial support of theW. M. Keck Foundation.

Synthetic Lick Indices and Detection of α-enhanced Stars. II. F, G, and K Stars in the -1.0 < [Fe/H] < +0.50 Range
We present an analysis of 402 F, G, and K solar neighborhood stars, withaccurate estimates of [Fe/H] in the range -1.0 to +0.5 dex, aimed at thedetection of α-enhanced stars and at the investigation of theirkinematical properties. The analysis is based on the comparison of 571sets of spectral indices in the Lick/IDS system, coming from fourdifferent observational data sets, with synthetic indices computed withsolar-scaled abundances and with α-element enhancement. We useselected combinations of indices to single out α-enhanced starswithout requiring previous knowledge of their main atmosphericparameters. By applying this approach to the total data set, we obtain alist of 60 bona fide α-enhanced stars and of 146 stars withsolar-scaled abundances. The properties of the detected α-enhancedand solar-scaled abundance stars with respect to their [Fe/H] values andkinematics are presented. A clear kinematic distinction betweensolar-scaled and α-enhanced stars was found, although a one-to-onecorrespondence to ``thin disk'' and ``thick disk'' components cannot besupported with the present data.

A Search for Sodium Absorption from Comets around HD 209458
We monitored the planet-bearing solar-type star HD 209458 for sodiumabsorption in the region of the stellar Na I D1 line that would beindicative of cometary activity in the system. We observed the starusing the Hobby-Eberly Telescope High Resolution Spectrograph with ahigh signal-to-noise ratio (S/N) and high spectral resolution for sixnights over the course of 2 years, from 2001 July to 2003 July. Frommodeling we determine a 20% likelihood of a detection, based on apredicted number of comets similar to that of the solar system. We findthat our analytical method is able to recover a signal and that our S/Nis sufficient to detect this feature in the spectral regions on eitherside of the core of the D1 line, where it is most likely to appear. Nosignificant absorption was detected for any of the nights based on a 3σ detection limit. We derive upper limits on the column density ofsodium of <~6×109 cm-2 for a signal inthe region around the line core and <~2×1010cm-2 for a signal in the core of the photospheric D1 line.These numbers are consistent with the sodium released in a singleperiodic comet in our own system, although a higher S/N may be necessaryto uncover a signal in the core of the D1 line. Implications forcometary activity in the HD 209458 system are discussed.

Chemical enrichment and star formation in the Milky Way disk. III. Chemodynamical constraints
In this paper, we investigate some chemokinematical properties of theMilky Way disk, by using a sample composed by 424 late-type dwarfs. Weshow that the velocity dispersion of a stellar group correlates with theage of this group, according to a law proportional to t0.26,where t is the age of the stellar group. The temporal evolution of thevertex deviation is considered in detail. It is shown that the vertexdeviation does not seem to depend strongly on the age of the stellargroup. Previous studies in the literature seem to not have found it dueto the use of statistical ages for stellar groups, rather thanindividual ages. The possibility to use the orbital parameters of a starto derive information about its birthplace is investigated, and we showthat the mean galactocentric radius is likely to be the most reliablestellar birthplace indicator. However, this information cannot bepresently used to derive radial evolutionary constraints, due to anintrinsic bias present in all samples constructed from nearby stars. Anextensive discussion of the secular and stochastic heating mechanismscommonly invoked to explain the age-velocity dispersion relation ispresented. We suggest that the age-velocity dispersion relation couldreflect the gradual decrease in the turbulent velocity dispersion fromwhich disk stars form, a suggestion originally made by Tinsley &Larson (\cite{tinsley}, ApJ, 221, 554) and supported by several morerecent disk evolution calculations. A test to distinguish between thetwo types of models using high-redshift galaxies is proposed.Full Table 1 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/423/517

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Evidence for the Exposure of Water Ice on Titan's Surface
The smoggy stratosphere of Saturn's largest moon, Titan, veils itssurface from view, except at narrow wavelengths centered at 0.83, 0.94,1.07, 1.28, 1.58, 2.0, 2.9, and 5.0 micrometers. We derived a spectrumof Titan's surface within these ``windows'' and detected featurescharacteristic of water ice. Therefore, despite the hundreds of metersof organic liquids and solids hypothesized to exist on Titan's surface,its icy bedrock lies extensively exposed.

Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog
We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.

Abundance Analysis of Planetary Host Stars. I. Differential Iron Abundances
We present atmospheric parameters and iron abundances derived fromhigh-resolution spectra for three samples of dwarf stars: stars that areknown to host close-in giant planets (CGP), stars for which radialvelocity data exclude the presence of a close-in giant planetarycompanion (no-CGP), as well as a random sample of dwarfs with a spectraltype and magnitude distribution similar to that of the planetary hoststars (control). All stars have been observed with the same instrumentand have been analyzed using the same model atmospheres, atomic data,and equivalent width modeling program. Abundances have been deriveddifferentially to the Sun, using a solar spectrum obtained with Callistoas the reflector with the same instrumentation. We find that the ironabundances of CGP dwarfs are on average 0.22 dex greater than that ofno-CGP dwarfs. The iron abundance distributions of both the CGP andno-CGP dwarfs are different than that of the control dwarfs, while thecombined iron abundances have a distribution that is very similar tothat of the control dwarfs. All four samples (CGP, no-CGP, combined, andcontrol) have different effective temperature distributions. We showthat metal enrichment occurs only for CGP dwarfs with temperatures justbelow solar and ~300 K higher than solar, whereas the abundancedifference is insignificant at Teff around 6000 K.

On the link between rotation, chromospheric activity and Li abundance in subgiant stars
The connection rotation-CaII emission flux-lithium abundance is analyzedfor a sample of bona fide subgiant stars, with evolutionary statusdetermined from HIPPARCOS trigonometric parallax measurements and fromthe Toulouse-Geneva code. The distribution of rotation and CaII emissionflux as a function of effective temperature shows a discontinuitylocated around the same spectral type, F8IV. Blueward of this spectraltype, subgiants have a large spread of values of rotation and CaII flux,whereas stars redward of F8IV show essentially low rotation and low CaIIflux. The strength of these declines depends on stellar mass. Theabundance of lithium also shows a sudden decrease. For subgiants withmass lower than about 1.2 Msun the decrease is located laterthan that in rotation and CaII flux, whereas for masses higher than 1.2Msun the decrease in lithium abundance is located around thespectral type F8IV. The discrepancy between the location of thediscontinuities of rotation and CaII emission flux and log n(Li) forstars with masses lower than 1.2 Msun seems to reflect thesensitivity of these phenomena to the mass of the convective envelope.The drop in rotation, which results mostly from a magnetic braking,requires an increase in the mass of the convective envelope less thanthat required for the decrease in log n(Li). The location of thediscontinuity in log n(Li) for stars with masses higher than 1.2Msun, in the same region of the discontinuities in rotationand CaII emission flux, may also be explained by the behavior of thedeepening of the convective envelope. The more massive the star is, theearlier is the increase of the convective envelope. In contrast to therelationship between rotation and CaII flux, which is fairly linear, therelationship between lithium abundance and rotation shows no cleartendency toward linear behavior. Similarly, no clear linear trend isobserved in the relationship between lithium abundance and CaII flux. Inspite of these facts, subgiants with high lithium content also have highrotation and high CaII emission flux.

Statistical cataloging of archival data for luminosity class IV-V stars. II. The epoch 2001 [Fe/H] catalog
This paper describes the derivation of an updated statistical catalog ofmetallicities. The stars for which those metallicities apply are ofspectral types F, G, and K, and are on or near the main sequence. Theinput data for the catalog are values of [Fe/H] published before 2002February and derived from lines of weak and moderate strength. Theanalyses used to derive the data have been based on one-dimensional LTEmodel atmospheres. Initial adjustments which are applied to the datainclude corrections to a uniform temperature scale which is given in acompanion paper (see Taylor \cite{t02}). After correction, the data aresubjected to a statistical analysis. For each of 941 stars considered,the results of that analysis include a mean value of [Fe/H], an rmserror, an associated number of degrees of freedom, and one or moreidentification numbers for source papers. The catalog of these resultssupersedes an earlier version given by Taylor (\cite{t94b}).Catalog is only available in electronic form at the CDS via anonymousftp cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/398/731

Statistical cataloging of archival data for luminosity class IV-V stars. I. The epoch 2001 temperature catalog
This paper is one of a pair in which temperatures and metallicitycatalogs for class IV-V stars are considered. The temperature catalogdescribed here is derived from a calibration based on stellar angulardiameters. If published calibrations of this kind are compared by usingcolor-index transformations, temperature-dependent differences among thecalibrations are commonly found. However, such differences are minimizedif attention is restricted to calibrations based on Johnson V-K. Acalibration of this sort from Di Benedetto (\cite{dib98}) is thereforetested and adopted. That calibration is then applied to spectroscopicand photometric data, with the latter predominating. Cousins R-Iphotometry receives special attention because of its high precision andlow metallicity sensitivity. Testing of temperatures derived from thecalibration suggests that their accuracy and precision are satisfactory,though further testing will be warranted as new results appear. Thesetemperatures appear in the catalog as values of theta equiv5040/T(effective). Most of these entries are accompanied by measured orderived values of Cousins R-I. Entries are given for 951 stars.Catalog is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/398/721

Multiplicity among solar-type stars. III. Statistical properties of the F7-K binaries with periods up to 10 years
Two CORAVEL radial velocity surveys - one among stars in the solarneighbourhood, the other in the Pleiades and in Praesepe - are merged toderive the statistical properties of main-sequence binaries withspectral types F7 to K and with periods up to 10 years. A sample of 89spectroscopic orbits was finally obtained. Among them, 52 relate to afree-of-bias selection of 405 stars (240 field stars and 165 clusterstars). The statistics corrected for selection effects yield thefollowing results: (1) No discrepancy is found between the binariesamong field stars and the binaries in open cluster. The distributions ofmass ratios, of periods, the period-eccentricity diagram and the binaryfrequencies are all within the same error intervals. (2) Thedistribution of mass ratios presents two maxima: a broad peak from q ~0.2 to q ~ 0.7, and a sharp peak for q > 0.8 (twins). Both arepresent among the early-type as well as among the late-type part of thesample, indicating a scale-free formation process. The peak for q >0.8 gradually decreases when long-period binaries are considered.Whatever their periods, the twins have eccentricities significantlylower than the other binaries, confirming a difference in the formationprocesses. Twins could be generated by in situ formation followed byaccretion from a gaseous envelope, whereas binaries with intermediatemass ratios could be formed at wide separations, but they are madecloser by migration led by interactions with a circumbinary disk. (3)The frequency of binaries with P<10 years is about 14%. (4) About0.3% of binaries are expected to appear as false positives in a planetsearch. Therefore, the frequency of planetary systems among stars ispresently 7+4-2%. The extension of thedistribution of mass ratios in the planetary range would result in avery sharp and very high peak, well separated from the binary stars withlow mass ratios. Based on photoelectric radial-velocity measurementscollected at Haute-Provence observatory and on observations made withthe ESA Hipparcos astrometry satellite.

Radial Velocities for 889 Late-Type Stars
We report radial velocities for 844 FGKM-type main-sequence and subgiantstars and 45 K giants, most of which had either low-precision velocitymeasurements or none at all. These velocities differ from the standardstars of Udry et al. by 0.035 km s-1 (rms) for the 26 FGKstandard stars in common. The zero point of our velocities differs fromthat of Udry et al.: =+0.053km s-1. Thus, these new velocities agree with the best knownstandard stars both in precision and zero point, to well within 0.1 kms-1. Nonetheless, both these velocities and the standardssuffer from three sources of systematic error, namely, convectiveblueshift, gravitational redshift, and spectral type mismatch of thereference spectrum. These systematic errors are here forced to be zerofor G2 V stars by using the Sun as reference, with Vesta and day sky asproxies. But for spectral types departing from solar, the systematicerrors reach 0.3 km s-1 in the F and K stars and 0.4 kms-1 in M dwarfs. Multiple spectra were obtained for all 889stars during 4 years, and 782 of them exhibit velocity scatter less than0.1 km s-1. These stars may serve as radial velocitystandards if they remain constant in velocity. We found 11 newspectroscopic binaries and report orbital parameters for them. Based onobservations obtained at the W. M. Keck Observatory, which is operatedjointly by the University of California and the California Institute ofTechnology, and on observations obtained at the Lick Observatory, whichis operated by the University of California.

HIPPARCOS age-metallicity relation of the solar neighbourhood disc stars
We derive age-metallicity relations (AMRs) and orbital parameters forthe 1658 solar neighbourhood stars to which accurate distances aremeasured by the HIPPARCOS satellite. The sample stars comprise 1382 thindisc stars, 229 thick disc stars, and 47 halo stars according to theirorbital parameters. We find a considerable scatter for thin disc AMRalong the one-zone Galactic chemical evolution (GCE) model. Orbits andmetallicities of thin disc stars show now clear relation each other. Thescatter along the AMR exists even if the stars with the same orbits areselected. We examine simple extension of one-zone GCE models whichaccount for inhomogeneity in the effective yield and inhomogeneous starformation rate in the Galaxy. Both extensions of the one-zone GCE modelcannot account for the scatter in age - [Fe/H] - [Ca/Fe] relationsimultaneously. We conclude, therefore, that the scatter along the thindisc AMR is an essential feature in the formation and evolution of theGalaxy. The AMR for thick disc stars shows that the star formationterminated 8 Gyr ago in the thick disc. As already reported by Grattonet al. (\cite{Gratton_et.al.2000}) and Prochaska et al.(\cite{Prochaska_et.al.2000}), thick disc stars are more Ca-rich thanthin disc stars with the same [Fe/H]. We find that thick disc stars showa vertical abundance gradient. These three facts, the AMR, verticalgradient, and [Ca/Fe]-[Fe/H] relation, support monolithic collapseand/or accretion of satellite dwarf galaxies as likely thick discformation scenarios. Tables 2 and 3 are only available in electronicform at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)or via http:/ /cdsweb.u-strasbg.fr/ cgi-bin/qcat?J/ A+A/394/927

Levels of coronal and chromospheric activity in late-type stars and various types of dynamo waves
We analyze the X-ray emission and chromospheric activity of late-type F,G, and K stars studied in the framework of the HK project. More powerfulcoronas are possessed by stars displaying irregular variations of theirchromospheric emission, while stars with cyclic activity arecharacterized by comparatively modest X-ray luminosities and ratios ofthe X-ray to bolometric luminosity L X/L bol. This indicates that thenature of processes associated with magnetic-field amplification in theconvective envelope changes appreciably in the transition from small tolarge dynamo numbers, directly affecting the character of the(α-Ω) dynamo. Due to the strong dependence of both thedynamo number and the Rossby number on the speed of axial rotation,earlier correlations found between various activity parameters and theRossby number are consistent with our conclusions. Our analysis makes itpossible to draw the first firm conclusions about the place of solaractivity among analogous processes developing in active late-type stars.

Chemical abundances in cool metal rich disk dwarf stars
The present study of spectra of twelve metal-rich cool dwarf stars,carefully selected in order to cover a range of temperatures ( ~ 4400 -6000 K), is a follow up on Feltzing & Gustafsson(1998)\nocite{feltzing} with the aim to understand the apparentover-ionization and anomalous elemental abundances found by them for theK dwarf stars in their sample. Our method of analysis employs syntheticspectra of the full spectrum both to constrain the continuum level andto derive abundances. It is shown that by using this method and imposinga strict excitation equilibrium (possible to do because of the care inselection of observed Fe i lines) we are able to show that metal-rich Kdwarf stars do not show anomalous stellar abundances, as indicated inFeltzing & Gustafsson (1998), and can, with reasonable efforts, beanalyzed in order to increase the number of metal-rich stars with usefulchemical abundances. With abundance analysis by means of spectrumsynthesis and assuming Local Thermodynamic Equilibrium (LTE) theabundances of Na, Si, Ca, Sc, Ti, V, Cr, Fe, Co, Ni, and Nd have beenderived. Also ionization balance is satisfied for Fe and Cr aftercorrecting the stellar effective temperatures such that both ionizationand excitation equilibrium were satisfied. In addition, spectra fromfive cool dwarf stars of the Feltzing & Gustafsson (1998) samplehave been analyzed with the methods used in this work. They showessentially the same abundance patterns as the new stars in this sample.Based on observations made at ESO, La Silla}

Removal of the calcium underabundance in cool metal rich Galactic disk dwarfs
An apparent Ca underabundance for cool metal rich disk dwarfs wasderived by Feltzing & Gustafsson (1998)nocite{feltzing}. This wassuggested to be a NLTE effect, following the prediction by Drake (1991).New NLTE calculations with MARCS atmospheres and opacities show thatdeviations from LTE are very small and can not explain theunderabundance. It is shown that the underabundance was primarily due toerroneously calculated atomic line broadening parameters (van der Waalsbroadening). Part of the underabundance was also due to the decision notto change photometrically determined stellar parameters to satisfy theFe i excitation balance. Based on observations made at ESO, La Silla

Lithium and rotation on the subgiant branch. II. Theoretical analysis of observations
Lithium abundances and rotation, determined for 120 subgiant stars inLèbre et al. (1999) are analyzed. To this purpose, theevolutionary status of the sample as well as the individual masses havebeen determined using the HIPPARCOS trigonometric parallax measurementsto locate very precisely our sample stars in the HR diagram. We look atthe distributions of A_Li and Vsini with mass when stars evolve from themain sequence to the subgiant branch. For most of the stars in oursample we find good agreement with the dilution predictions. However,the more massive cool stars with upper limits of Li abundances show asignificant discrepancy with the theoretical predictions, even if theNon-LTE effects are taken into account. For the rotation behaviour, ouranalysis confirms that low mass stars leave the main sequence with a lowrotational rate, while more massive stars are slowed down only whenreaching the subgiant branch. We also checked the connection between theobserved rotation behaviour and the magnetic braking due to thedeepening of the convective envelope. Our results shed new light on thelithium and rotation discontinuities in the evolved phase.

The reality of old moving groups - the case of HR 1614. Age, metallicity, and a new extended sample
We prove the existence of the old and metal-rich moving group HR 1614.This is done using the new Hipparcos parallaxes in combination withmetallicities derived from Strömgren photometry, supported bydynamical simulations of the evolution of old moving groups in thegalactic potential. A new selection criterion for this moving group ispresented as well as a new, extended sample of probable member stars. Inparticular we find that the HR 1614 moving group has an age of about 2Gyr (using Bertelli et al. 1994 isochrones) and a [Fe/H] =~ 0.19 +/-0.06 dex. We also revisit and apply our new selection criterion to thesamples in Eggen (1992) and Eggen (1998b). It is found that, whenbinaries and stars with too low metallicity have been removed, 15 of hisstars fulfill our criteria. Based on observations with the ESA Hipparcossatellite.

The Lick Planet Search: Detectability and Mass Thresholds
We present an analysis of 11 yr of precision radial velocitymeasurements of 76 nearby solar-type stars from the Lick radial velocitysurvey. For each star, we report on variability, periodicity, andlong-term velocity trends. Our sample of stars contains eight knowncompanions with mass (Mpsini) less than 8 Jupiter masses(MJ), six of which were discovered at Lick. For the remainingstars, we place upper limits on the companion mass as a function oforbital period. For most stars, we can exclude companions with velocityamplitude K>~20 m s-1 at the 99% level, orMpsini>~0.7MJ(a/AU)1/2 for orbitalradii a<~5 AU. We examine the implications of our results for theobserved distribution of mass and orbital radius of companions. We showthat the combination of intrinsic stellar variability and measurementerrors most likely explains why all confirmed companions so far haveK>~40 m s-1. The finite duration of the observationslimits detection of Jupiter-mass companions to a<~3 AU. Thus itremains possible that the majority of solar-type stars harborJupiter-mass companions much like our own, and if so these companionsshould be detectable in a few years. It is striking that more massivecompanions with Mpsini>3MJ are rare at orbitalradii 4-6 AU; we could have detected such objects in ~90% of stars, yetfound none. The observed companions show a ``piling-up'' toward smallorbital radii, and there is a paucity of confirmed and candidatecompanions with orbital radii between ~0.2 and ~1 AU. The small numberof confirmed companions means that we are not able to rule out selectioneffects as the cause of these features. We show that the traditionalmethod for detecting periodicities, the Lomb-Scargle periodogram, failsto account for statistical fluctuations in the mean of a sampledsinusoid, making it nonrobust when the number of observations is small,the sampling is uneven, or for periods comparable to or greater than theduration of the observations. We adopt a ``floating-mean'' periodogram,in which the zero point of the sinusoid is allowed to vary during thefit. We discuss in detail the normalization of the periodogram and theprobability distribution of periodogram powers. We stress that the threedifferent prescriptions in the literature for normalizing theperiodogram are statistically equivalent and that it is not possible towrite a simple analytic form for the false alarm probability, makingMonte Carlo methods essential.

Photometric Measurements of the Fields of More than 700 Nearby Stars
In preparation for optical/IR interferometric searches for substellarcompanions of nearby stars, we undertook to characterize the fields ofall nearby stars visible from the Northern Hemisphere to determinesuitable companions for interferometric phase referencing. Because theKeck Interferometer in particular will be able to phase-reference oncompanions within the isoplanatic patch (30") to about 17th magnitude atK, we took images at V, r, and i that were deep enough to determine iffield stars were present to this magnitude around nearby stars using aspot-coated CCD. We report on 733 fields containing 10,629 measurementsin up to three filters (Gunn i, r and Johnson V) of nearby stars down toabout 13th magnitude at V.

A catalog of rotational and radial velocities for evolved stars
Rotational and radial velocities have been measured for about 2000evolved stars of luminosity classes IV, III, II and Ib covering thespectral region F, G and K. The survey was carried out with the CORAVELspectrometer. The precision for the radial velocities is better than0.30 km s-1, whereas for the rotational velocity measurementsthe uncertainties are typically 1.0 km s-1 for subgiants andgiants and 2.0 km s-1 for class II giants and Ib supergiants.These data will add constraints to studies of the rotational behaviourof evolved stars as well as solid informations concerning the presenceof external rotational brakes, tidal interactions in evolved binarysystems and on the link between rotation, chemical abundance and stellaractivity. In this paper we present the rotational velocity v sin i andthe mean radial velocity for the stars of luminosity classes IV, III andII. Based on observations collected at the Haute--Provence Observatory,Saint--Michel, France and at the European Southern Observatory, LaSilla, Chile. Table \ref{tab5} also available in electronic form at CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Lithium and rotation on the subgiant branch. I. Observations and spectral analysis
We have obtained new high resolution spectroscopic observations of thelithium line at 6707.81 Angstroms and derived lithium abundances (A_Li )by spectral synthesis for a sample of about 120 F-, G- and K-typePopulation I subgiant stars. For each of these stars, high precisionrotational velocity obtained with the CORAVEL spectrometer is available.We present the behavior of the lithium abundance as a function ofeffective temperature, which shows a sort of discontinuity around 5600K, somewhat later than the well known rotational discontinuity. based onobservations collected at the Observatoire de Haute--Provence (France)and at the European Southern Observatory, La Silla (Chile).

Evolutionary Oddities in Old Disk Population Clusters
With a luminosity zero point fixed by the kinematics of old disksuperclusters (HR 1614, t = 6 Gyr, [Fe/H] = +0.1 dex) and groups(Arcturus, t = 14 Gyr, [Fe/H] = -0.65 dex), the luminosities and colorsof evolved old disk stars, especially red horizontal branch (RHB), earlyasymptotic branch [AGB(1)], thermally pulsing asymptotic giant branch[AGB(2)], and sdOB stars in old disk clusters (NGC 6791, 47 Tuc, M71,M67, Mel 66, NGC 2420, NGC 2204, and NGC 2443) are discussed. (1) TheRHB stars in the old disk all have M_V = +0.7 +/- 0.1 (M_K = -1.3 +/-0.1) mag. (2) Large-amplitude red variables (LARVs) with quasi-stableperiods and light curves are old disk stars on AGB(2). (3) AGB(1)objects include CH stars and semiregular (SRa) variables. (4) Thepopulous and overabundant cluster NGC 6791 may be the only disk clusterwith sdOB stars, populating the lower portion of the bifurcated extendedhorizontal branch that is usual in most ``blue tailed'' and high-densityhalo clusters. (5) Post-red giant branch (RGB) stars in old diskclusters show a B - V (b - y) defect when compared with RGB stars,possibly because of a change in the character of the atmospheres. (6) Ifthe bulk of the LARVs are pulsating in the fundamental mode, R Vir (P =145 days) is possibly a first-overtone pulsator. (7) The overabundantold disk clusters are within the solar circle, with Liller 1 being atthe Galactic center. (8) Several probable RHB stars at the southGalactic pole are identified. (9) The period-age relation, combined withthe known spatial distribution of Galactic LARVs, leads to a relationbetween age and scale height of distribution that monotonicallyincreases with age, leaving no obvious reason for a bifurcation of thepopulation.

Kinematics and Metallicity of Stars in the Solar Region
Several samples of nearby stars with the most accurate astrometric andphotometric parameters are searched for clues to their evolutionaryhistory. The main samples are (1) the main-sequence stars with b - ybetween 0.29 and 0.59 mag (F3 to K1) in the Yale parallax catalog, (2) agroup of high-velocity subgiants studied spectroscopically by Ryan &Lambert, and (3) high-velocity main-sequence stars in the extensiveinvestigation by Norris, Bessel, & Pickles. The major conclusionsare as follows: (1) The oldest stars (halo), t >= 10-12 Gyr, haveV-velocities (in the direction of Galactic rotation and referred to theSun) in the range from about -50 to -800 km s^-1 and have aheavy-element abundance [Fe/H] of less than about -0.8 dex. The agerange of these objects depends on our knowledge of globular clusterages, but if age is correlated with V-velocity, the youngest may be M22and M28 (V ~ -50 km s^-1) and the oldest NGC 3201 (V ~ -500 km s^-1) andassorted field stars. (2) The old disk population covers the large agerange from about 2 Gyr (Hyades, NGC 752) to 10 or 12 Gyr (Arcturusgroup, 47 Tuc), but the lag (V) velocity is restricted to less thanabout 120 km s^-1 and [Fe/H] >= -0.8 or -0.9 dex. The [Fe/H] ~ -0.8dex division between halo and old disk, near t ~ 10-12 Gyr, is marked bya change in the character of the CN index (C_m) and of the blanketingparameter K of the DDO photometry. (3) The young disk population, t <2 Gyr, is confined exclusively to a well-defined area of the (U, V)velocity plane. The age separating young and old disk stars is also thatseparating giant evolution of the Hyades (near main-sequence luminosity)and M67 (degenerate helium cores and a large luminosity rise) kinds. Thetwo disk populations are also separated by such indexes as the g-indexof Geveva photometry. There appears to be no obvious need to invokeexogeneous influences to understand the motion and heavy-elementabundance distributions of the best-observed stars near the Sun.Individual stars of special interest include the parallax star HD 55575,which may be an equal-component binary, and the high-velocity star HD220127, with a well-determined space velocity near 1000 km s^-1.

The ROSAT all-sky survey catalogue of optically bright main-sequence stars and subgiant stars
We present X-ray data for all main-sequence and subgiant stars ofspectral types A, F, G, and K and luminosity classes IV and V listed inthe Bright Star Catalogue that have been detected as X-ray sources inthe ROSAT all-sky survey; several stars without luminosity class arealso included. The catalogue contains 980 entries yielding an averagedetection rate of 32 percent. In addition to count rates, sourcedetection parameters, hardness ratios, and X-ray fluxes we also listX-ray luminosities derived from Hipparcos parallaxes. The catalogue isalso available in electronic form via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

The Abundance of CN. Calcium and Heavy Elements in High Velocity Stars.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1997AJ....114..825E&db_key=AST

Добавить новую статью


Внешние ссылки

  • - Внешних ссылок не найдено -
Добавить внешнюю ссылку


Группы:


Наблюдательные данные и астрометрия

Созвездие:Рыбы
Прямое восхождение:02h00m09.20s
Склонение:+03°05'50.0"
Видимая звёздная величина:5.88
Расстояние:31.075 парсек
Собственное движение RA:231.7
Собственное движение Dec:-253.7
B-T magnitude:6.603
V-T magnitude:5.94

Каталоги и обозначения:
Собственные имена
Flamsteed112 Psc
HD 1989HD 12235
TYCHO-2 2000TYC 40-1337-1
USNO-A2.0USNO-A2 0900-00467057
BSC 1991HR 582
HIPHIP 9353

→ Запросить дополнительные каталоги и обозначения от VizieR