Оглавление
Изображения
Загрузить ваше изображение
DSS Images Other Images
Публикации по объекту
The stellar population of the Rosat North Ecliptic Pole survey Context: .X-ray surveys are a very efficient mean of detecting youngstars and therefore allow us to study the young stellar population inthe solar neighborhood and the local star formation history in the lastbillion of years. Aims: .We want to study the young stellarpopulation in the solar neighborhood, to constrain its spatial densityand scale height as well as the recent local star formation history. Methods: .We analyze the stellar content of the ROSAT North EclipticPole survey, and compare the observations with the predictions derivedfrom stellar galactic model. Since the ROSAT NEP survey is sensitive atintermediate fluxes is able to sample both the youngest stars and theintermediate age stars (younger than 109 years), linking theshallow and deep flux surveys already published in the literature. Results: .We confirm the existence of an excess of yellow stars inour neighborhood previously seen in shallow survey, which is likely dueto a young star population not accounted for in the model. However theexcellent agreement between observations and predictions of dM starscasts some doubt on the real nature of this active population.
| Effective temperature scale and bolometric corrections from 2MASS photometry We present a method to determine effective temperatures, angularsemi-diameters and bolometric corrections for population I and II FGKtype stars based on V and 2MASS IR photometry. Accurate calibration isaccomplished by using a sample of solar analogues, whose averagetemperature is assumed to be equal to the solar effective temperature of5777 K. By taking into account all possible sources of error we estimateassociated uncertainties to better than 1% in effective temperature andin the range 1.0-2.5% in angular semi-diameter for unreddened stars.Comparison of our new temperatures with other determinations extractedfrom the literature indicates, in general, remarkably good agreement.These results suggest that the effective temperaure scale of FGK starsis currently established with an accuracy better than 0.5%-1%. Theapplication of the method to a sample of 10 999 dwarfs in the Hipparcoscatalogue allows us to define temperature and bolometric correction (Kband) calibrations as a function of (V-K), [m/H] and log g. Bolometriccorrections in the V and K bands as a function of T_eff, [m/H] and log gare also given. We provide effective temperatures, angularsemi-diameters, radii and bolometric corrections in the V and K bandsfor the 10 999 FGK stars in our sample with the correspondinguncertainties.
| Spectroscopic survey of field stars : A search for metal-poor stars We have undertaken a spectroscopic survey of field stars to finemetal-poor objects among them. Though the main objective of the surveyis to find new metal-poor stars, stellar parameterization is carried outfor all the sample stars so that the other categories of interestingobjects like composite stars, weak or strong CN, CH stars etc. can alsobe identified. Observations are carried out using OMR spectrographattached to VBT, Kavalur. The sample of candidate stars are chosen fromprismatic survey of Beers and his collaborators covering a large part ofthe Galaxy. At the first phase of this project, the analysis ofcompleted for a set of 19 relatively hot stars (Teff in 6000 to 8000Krage). The metallicities of the program stars are derived bysynthesizing the spectrum in the wavelength range 4900 to 5400 Åfor different metallicities and matching them with the observed spectra.This spectral region contains strong feature of Fe I at 5269 Å andone moderately strong Fe I blend at 5228 Å. These features weregenerally relied upon for Fe/H determination. More than half of thecandidate stars were found to show (Fe/H) in -0.7 to -1.2 range. Twomost metal-poor stars have (Fe/H) values of -1.3 and -1.8. It appearsthat metal-poor candidates suggested by Beers et al. from theirprismatic survey has a very significant fraction of metal-poor stars.The significantly metal-poor stars found so far would be studied indetail using high resolution spectra to understand nucleosynthesisprocesses that might have occurred in early Galaxy.
| Frequency Decomposition of Astrometric Signature of Planetary Systems We present a theoretical analysis of astrometric searches for extrasolarplanets with the Space Interferometry Mission (SIM). In particular, wederive a model for future measurements with SIM and discuss the problemof reliable estimation of orbital elements of planets. For this purposewe propose a new method of data analysis and present a numerical test ofits application to simulated SIM astrometric measurements of theυ And planetary system. We demonstrate that our approach allowsfor successful determination of its orbital elements. Most of theproposed approach can be adopted for other astrometric missions.
| Stellar populations in Seyfert 2 galaxies. I. Atlas of near-UV spectra We have carried out a uniform spectroscopic survey of Seyfert 2 galaxiesto study the stellar populations of the host galaxies. New spectra havebeen obtained for 79 Southern galaxies classified as Seyfert 2 galaxies,7 normal galaxies, and 73 stars at a resolution of 2.2 Å over thewavelength region 3500-5300 Å. Cross-correlation between thestellar spectra is performed to group the individual observations into44 synthesis standard spectra. The standard groups include a solarabundance sequence of spectral types from O5 to M3 for dwarfs, giants,and supergiants. Metal-rich and metal-weak F-K giants and dwarfs arealso included. A comparison of the stellar data with previouslypublished spectra is performed both with the individual spectra and thestandard groups. For each galaxy, two distinct spatial regions areconsidered: the nucleus and the external bulge. Spectroscopic variationsfrom one galaxy to another and from the central to the external regionare briefly discussed. It is found that the central region of a Seyfert2 galaxy, after subtracting the bulge stellar population, always shows anear-UV spectrum similar to one of three representative categories: a)many strong emission lines and only two visible absorption lines (Ca IiK and G band) (Sey2e); b) few emission lines, many absorption lines, anda redder continuum than the previous category (Sey2a); c) an almost flatcontinuum and high-order Balmer lines seen in absorption (Sey2b). Theproportion of Seyfert 2 galaxies belonging to each class is found to be22%, 28%, and 50% respectively. We find no significative differencesbetween morphology distributions of Seyfert 2 galaxies with Balmer linesdetected in absorption and the rest of the sample. This quick lookthrough the atlas indicates that half of Seyfert 2 galaxies harbour ayoung stellar population (about or less than 100 Myr) in their centralregion, clearly unveiled by the high order Balmer series seen inabsorption. Based on observations collected at the European SouthernObservatory, Chile (ESO 65.P-0014(A)). Tables 1-3 and 8 and Fig. A.1(Appendix A) are only available in electronic form athttp://www.edpsciences.org
| Red supergiants in the LMC - III: luminous F and G stars New BVRI observations for 40 and spectrophotometric measurements for 23F to G LMC supergiant candidates (and 3 galactic F to G supergiants) arepresented. The errors of the BVRI data are 0.01 to 0.03 mag in mostcases. The wavelength range of the spectra is 3400 to 6400 Angstroms,their resolution 10 Angstroms. The mean error of the fluxes is 0.03 mag.Spectral indices measuring the strengths of the Hβ , Hγ ,Hdelta , NaD and CaII H+K lines, the CHα_ {0} and CNbeta_ {0}bands, of the Balmer jump and the slope of the continuum redwards arediscussed as measures of effective temperature and luminosity on thebasis of galactic stars with accurate MK types and parallaxes. TheHγ line and the continuum gradient are very good temperaturecriteria, the CHα_ {0} band and especially the Balmer jump forluminosity. The luminosity classification given for F to G supergiantcandidates in the LMC in the literature is often doubtful. 5 of the 23stars observed spectrophotometrically turn out to be probably galacticforeground dwarfs on the basis both of the Balmer jump and thecomparison of their flux distributions with synthetic ones based on theKurucz model atmospheres. Surface gravities derived purely on the basisof flux distributions and such ones given by models of stellar evolutionagree with each other for dwarfs and giants only. For supergiants theformer are about 1.0 dex higher than the latter. As a consequenceeffective temperatures and metallicities given by these two methodsdeviate from each other for such stars, too. The intrinsic colours andtemperatures of galactic and LMC supergiants do not differ. Withabsolute magnitudes up to -9.6 mag the upper luminosity limit in the LMCdoes not exceed that in the Galaxy, where Ia-0 supergiants haveMV of up to -9.5 mag. The metallicities of the supergiantsshow a rather large scatter. Nevertheless the mean metallicities of 0.02+/- 0.09 dex for the Galaxy and -0.26 +/- 0.10 dex for the LMC agreewell with other observations.
| A new library of stellar optical spectra Attention is given to a new digital optical stellar library consistingof spectra covering 3510-8930 R at 11-A resolution for 72 differentstellar types. These types extend over the spectral classes O-M andluminosity classes I-V. Most spectra are of solar metallicity stars butsome metal-rich and metal-poor spectra are included. This new library isquantitatively compared to two previously published libraries. It offersseveral advantages over them: it is photometrically well-calibratedindividually and consistently from star to star. Good temperature andluminosity coverage has been achieved. The incorporation of stars withwell-determined temperature, metallicity, and surface gravity parametersincreases the accuracy of the spectral type assigned to each compositelibrary star.
| A library of stellar spectra Spectra for 161 stars having spectral classes O-M and luminosity classesV, III, and I have been incorporated into a library available onmagnetic tape. The spectra extend from 3510 to 7427 A at a resolution ofabout 4.5 A. The typical photometric uncertainty of each resolutionelement in the spectra is on the order of 1 percent while broad-bandvariations are smaller than 3 percent. Potential uses for the libraryinclude population synthesis of galaxies and clusters, tests of stellaratmosphere models, spectral classification, and the generation of colorindices having arbitrary wavelength and bandpass.
|
Добавить новую статью
Внешние ссылки
- - Внешних ссылок не найдено -
Добавить внешнюю ссылку
Группы:
|
Наблюдательные данные и астрометрия
Созвездие: | Андромеда |
Прямое восхождение: | 01h38m48.06s |
Склонение: | +40°45'38.8" |
Видимая звёздная величина: | 8.472 |
Расстояние: | 124.224 парсек |
Собственное движение RA: | -15.5 |
Собственное движение Dec: | -6.7 |
B-T magnitude: | 8.881 |
V-T magnitude: | 8.506 |
Каталоги и обозначения:
|