Poчetna     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Астро Фотографије     Колекција     Форум     Blog New!     FAQ(Често постављана питања     Улогуј се  
→ Adopt this star  

HD 65592


Садржај

Слике

Уплоадјуј своје слике

DSS Images   Other Images


Везани чланци

Observational studies of Cepheid amplitudes. I. Period-amplitude relationships for Galactic Cepheids and interrelation of amplitudes
Context: The dependence of amplitude on the pulsation period differsfrom other Cepheid-related relationships. Aims: We attempt torevise the period-amplitude (P-A) relationship of Galactic Cepheidsbased on multi-colour photometric and radial velocity data. Reliable P-Agraphs for Galactic Cepheids constructed for the U, B, V, R_C, andIC photometric bands and pulsational radial velocityvariations facilitate investigations of previously poorly studiedinterrelations between observable amplitudes. The effects of bothbinarity and metallicity on the observed amplitude, and the dichotomybetween short- and long-period Cepheids can both be studied. Methods: A homogeneous data set was created that contains basicphysical and phenomenological properties of 369 Galactic Cepheids.Pulsation periods were revised and amplitudes were determined by theFourier method. P-A graphs were constructed and an upper envelope to thedata points was determined in each graph. Correlations between variousamplitudes and amplitude-related parameters were searched for, usingCepheids without known companions. Results: Large amplitudeCepheids with companions exhibit smaller photometric amplitudes onaverage than solitary ones, as expected, while s-Cepheids pulsate withan arbitrary (although small) amplitude. The ratio of the observedradial velocity to blue photometric amplitudes, AV_RAD/A_B,is not as good an indicator of the pulsation mode as predictedtheoretically. This may be caused by an incorrect mode assignment to anumber of small amplitude Cepheids, which are not necessarily firstovertone pulsators. The dependence of the pulsation amplitudes onwavelength is used to identify duplicity of Cepheids. More than twentystars previously classified as solitary Cepheids are now suspected tohave a companion. The ratio of photometric amplitudes observed invarious bands confirms the existence of a dichotomy among normalamplitude Cepheids. The limiting period separating short- andlong-period Cepheids is 10.47 days. Conclusions:Interdependences of pulsational amplitudes, the period dependence of theamplitude parameters, and the dichotomy have to be taken into account asconstraints in modelling the structure and pulsation of Cepheids.Studies of the P-L relationship must comply with the break at 10.47°instead of the currently used “convenient” value of 10 days.Table 1 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/504/959

The influence of chemical composition on the properties of Cepheid stars. II. The iron content
Context: The Cepheid period-luminosity (PL) relation is unquestionablyone of the most powerful tools at our disposal for determining theextragalactic distance scale. While significant progress has been madein the past few years towards its understanding and characterizationboth on the observational and theoretical sides, the debate on theinfluence that chemical composition may have on the PL relation is stillunsettled. Aims: With the aim to assess the influence of the stellariron content on the PL relation in the V and K bands, we have relatedthe V-band and the K-band residuals from the standard PL relations ofFreedman et al. (2001, ApJ, 553, 47) and Persson et al. (2004, AJ, 128,2239), respectively, to [Fe/H]. Methods: We used direct measurements ofthe iron abundances of 68 Galactic and Magellanic Cepheids from FEROSand UVES high-resolution and high signal-to-noise spectra. Results: Wefind a mean iron abundance ([Fe/H]) about solar (σ = 0.10) for ourGalactic sample (32 stars), ~-0.33 dex (σ = 0.13) for the LargeMagellanic Cloud (LMC) sample (22 stars) and ~-0.75 dex (σ = 0.08)for the Small Magellanic Cloud (SMC) sample (14 stars). Our abundancemeasurements of the Magellanic Cepheids double the number of starsstudied up to now at high resolution. The metallicity affects the V-bandCepheid PL relation and metal-rich Cepheids appear to be systematicallyfainter than metal-poor ones. These findings depend neither on theadopted distance scale for Galactic Cepheids nor on the adopted LMCdistance modulus. Current data do not allow us to reach a firmconclusion concerning the metallicity dependence of the K-band PLrelation. The new Galactic distances indicate a small effect, whereasthe old ones support a marginal effect. Conclusions: Recent robustestimates of the LMC distance and current results indicate that theCepheid PL relation is not Universal.Based on observations madewith ESO Telescopes at Paranal and La Silla Observatories underproposal ID 66.D-0571.Full Table [see full textsee full textsee full textsee full text] isonly available in electronic form at http://www.aanda.org

Cepheid parallaxes and the Hubble constant
Revised Hipparcos parallaxes for classical Cepheids are analysedtogether with 10 Hubble Space Telescope (HST)-based parallaxes. In areddening-free V, I relation we find that the coefficient of logP is thesame within the uncertainties in our Galaxy as in the Large MagellanicCloud (LMC), contrary to some previous suggestions. Cepheids in theinner region of NGC4258 with near solar metallicities confirm thisresult. We obtain a zero-point for the reddening-free relation and applyit to the Cepheids in galaxies used by Sandage et al. to calibrate theabsolute magnitudes of Type Ia supernova (SNIa) and to derive the Hubbleconstant. We revise their result for H0 from 62 to 70 +/-5kms-1Mpc-1. The Freedman et al. value is revisedfrom 72 to 76 +/- 8kms-1Mpc-1. These results areinsensitive to Cepheid metallicity corrections. The Cepheids in theinner region of NGC4258 yield a modulus of 29.22 +/- 0.03 (int.)compared with a maser-based modulus of 29.29 +/- 0.15. Distance modulifor the LMC, uncorrected for any metallicity effects, are 18.52 +/- 0.03from a reddening-free relation in V, I; 18.47 +/- 0.03 from aperiod-luminosity relation at K; 18.45 +/- 0.04 from aperiod-luminosity-colour relation in J, K. Adopting a metallicitycorrection in V, I from Macri et al. leads to a true LMC modulus of18.39 +/- 0.05.

Detailed chemical composition of Galactic Cepheids. A determination of the Galactic abundance gradient in the 8-12 kpc region
Aims.The recent introduction of high-resolution/large spectral-rangespectrographs has provided the opportunity to investigate the chemicalcomposition of classical Cepheids in detail. This paper focusses on newabundance determinations for iron and 6 light metals (O, Na, Mg, Al, Si,Ca) in 30 Galactic Cepheids. We also give a new estimate of the Galacticradial abundance gradient. Methods: The stellar effective temperatureswere determined using the method of line depth ratios, and the surfacegravity and the microturbulent velocity vt by imposing theionization balance between Fe I and Fe II with the help of curves ofgrowth. Abundances were calculated with classical LTE atmosphere models. Results: Abundances were obtained with rms accuracies of about0.05-0.10 dex for Fe, and 0.05-0.20 dex for the other elements. Cepheidsin our sample have solar-like abundances, and current measurements agreequite well with previous determinations. We computed "single zone"Galactic radial abundance gradients for the 8-12 kpc region and found aslope for iron of -0.061 dex kpc-1.Based on observations made with the 1.52 m ESO Telescope at La Silla,Chile.

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

Period-colour and amplitude-colour relations in classical Cepheid variables - IV. The multiphase relations
The superb phase resolution and quality of the Optical GravitationalLensing Experiment (OGLE) data on the Large Magellanic Cloud (LMC) andSmall Magellanic Cloud (SMC) Cepheids, together with existing data onGalactic Cepheids, are combined to study the period-colour (PC) andamplitude-colour (AC) relations as a function of pulsation phase. Ourresults confirm earlier work that the LMC PC relation (at mean light) ismore consistent with two lines of differing slopes, separated at aperiod of 10 d. However, our multiphase PC relations reveal much newstructure which can potentially increase our understanding of Cepheidvariables. These multiphase PC relations provide insight into why theGalactic PC relation is linear but the LMC PC relation is non-linear.This is because the LMC PC relation is shallower for short (logP < 1)and steeper for long (logP > 1) period Cepheids than thecorresponding Galactic PC relation. Both of the short- and long-periodCepheids in all three galaxies exhibit the steepest and shallowestslopes at phases around 0.75-0.85, respectively. A consequence is thatthe PC relation at phase ~ 0.8 is highly non-linear. Further, theGalactic and LMC Cepheids with logP > 1 display a flat slope in thePC plane at phases close to the maximum light. When the LMCperiod-luminosity (PL) relation is studied as a function of phase, weconfirm that it changes with the PC relation. The LMC PL relation in Vand I band near the phase of 0.8 provides compelling evidence that thisrelation is also consistent with two lines of differing slopes joined ata period close to 10 d.

Mean Angular Diameters and Angular Diameter Amplitudes of Bright Cepheids
We predict mean angular diameters and amplitudes of angular diametervariations for all monoperiodic PopulationI Cepheids brighter than=8.0 mag. The catalog is intended to aid selecting mostpromising Cepheid targets for future interferometric observations.

New Period-Luminosity and Period-Color relations of classical Cepheids: I. Cepheids in the Galaxy
321 Galactic fundamental-mode Cepheids with good B, V, and (in mostcases) I photometry by Berdnikov et al. (\cite{Berdnikov:etal:00}) andwith homogenized color excesses E(B-V) based on Fernie et al.(\cite{Fernie:etal:95}) are used to determine their period-color (P-C)relation in the range 0.4~ 1.4). The latter effect is enhanced by asuggestive break of the P-L relation of LMC and SMC at log P = 1.0towards still shallower values as shown in a forthcoming paper.Table 1 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/404/423

Fundamental Parameters of Cepheids. V. Additional Photometry and Radial Velocity Data for Southern Cepheids
I present photometric and radial velocity data for Galactic Cepheids,most of them being in the southern hemisphere. There are 1250 Genevaseven-color photometric measurements for 62 Cepheids, the averageuncertainty per measurement is better than 0.01 mag. A total of 832velocity measurements have been obtained with the CORAVEL radialvelocity spectrograph for 46 Cepheids. The average accuracy of theradial velocity data is 0.38 km s-1. There are 33 stars withboth photometry and radial velocity data. I discuss the possiblebinarity or period change that these new data reveal. I also presentreddenings for all Cepheids with photometry. The data are availableelectronically. Based on observations obtained at the European SouthernObservatory, La Silla.

Photometry and radial velocities of cepheids and other variable stars in the Galaxy and the LMC
UBVRIc and radial velocity measurements are presented for Galactic andLMC Cepheids, and for several variables of other type. The photometrycomprises 168 objects with 1790 phases, and the speedometry 15 objectswith 97 phases.

Photoelectric Observations of Southern Cepheids in 2001
A total of 2097 photometric observations in the BVIc systemare presented for 117 Cepheids located in the southern hemisphere. Themain purpose of the photometry is to provide new epochs of maximumbrightness for studying Cepheid period changes, as well as to establishcurrent light elements for the Cepheids.

Catalogue of Apparent Diameters and Absolute Radii of Stars (CADARS) - Third edition - Comments and statistics
The Catalogue, available at the Centre de Données Stellaires deStrasbourg, consists of 13 573 records concerning the results obtainedfrom different methods for 7778 stars, reported in the literature. Thefollowing data are listed for each star: identifications, apparentmagnitude, spectral type, apparent diameter in arcsec, absolute radiusin solar units, method of determination, reference, remarks. Commentsand statistics obtained from CADARS are given. The Catalogue isavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcar?J/A+A/367/521

Stars with the Largest Hipparcos Photometric Amplitudes
A list of the 2027 stars that have the largest photometric amplitudes inHipparcos Photometry shows that most variable stars are all Miras. Thepercentage of variable types change as a function of amplitude. Thiscompilation should also be of value to photometrists looking forrelatively unstudied, but large amplitude stars.

Galactic Cepheids. Catalogue of light-curve parameters and distances
We report a new version of the catalogue of distances and light-curveparameters for Galactic classical Cepheids. The catalogue listsamplitudes, magnitudes at maximum light, and intensity means for 455stars in BVRI filters of the Johnson system and (RI)_C filters of theCron-Cousins system. The distances are based on our new multicolour setof PL relations and on our Cepheid-based solution for interstellarextinction law parameters and are referred to an LMC distance modulus of18.25. The catalogue is only available in electronic form at the CDS viaanonymous ftp (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Multi-colour PL-relations of Cepheids in the bt HIPPARCOS catalogue and the distance to the LMC
We analyse a sample of 236 Cepheids from the hipparcos catalog, usingthe method of ``reduced parallaxes'' in V, I, K and the reddening-free``Wesenheit-index''. We compare our sample to those considered by Feast& Catchpole (1997) and Lanoix et al. (1999), and argue that oursample is the most carefully selected one with respect to completeness,the flagging of overtone pulsators, and the removal of Cepheids that mayinfluence the analyses for various reasons (double-mode Cepheids,unreliable hipparcos solutions, possible contaminated photometry due tobinary companions). From numerical simulations, and confirmed by theobserved parallax distribution, we derive a (vertical) scale height ofCepheids of 70 pc, as expected for a population of 3-10 Msunstars. This has consequences for Malmquist- and Lutz-Kelker (Lutz &Kelker 1973, Oudmaijer et al. 1998) type corrections which are smallerfor a disk population than for a spherical population. The V and I datasuggest that the slope of the Galactic PL-relations may be shallowerthan that observed for LMC Cepheids, either for the whole period range,or that there is a break at short periods (near log P_0 ~ 0.7-0.8). Westress the importance of two systematic effects which influence thedistance to the LMC: the slopes of the Galactic PL-relations andmetallicity corrections. In order to assess the influence of thesevarious effects, we present 27 distance moduli (DM) to the LMC. Theseare based on three different colours (V,I,K), three different slopes(the slope observed for Cepheids in the LMC, a shallower slope predictedfrom one set of theoretical models, and a steeper slope as derived forGalactic Cepheids from the surface-brightness technique), and threedifferent metallicity corrections (no correction as predicted by one setof theoretical models, one implying larger DM as predicted by anotherset of theoretical models, and one implying shorter DM based onempirical evidence). We derive DM between 18.45 +/- 0.18 and 18.86 +/-0.12. The DM based on K are shorter than those based on V and I andrange from 18.45 +/- 0.18 to 18.62 +/- 0.19, but the DM in K could besystematically too low by about 0.1 magnitude because of a bias due tothe fact that NIR photometry is available only for a limited number ofstars. From the Wesenheit-index we derive a DM of 18.60 +/- 0.11,assuming the observed slope of LMC Cepheids and no metallicitycorrection, for want of more information. The DM to the LMC based on theparallax data can be summarised as follows. Based on the PL-relation inV and I, and the Wesenheit-index, the DM is 18.60 ± 0.11(± 0.08 slope)(^{+0.08}_{-0.15} ;metallicity), which is ourcurrent best estimate. Based on the PL-relation in K the DM is ;;;;18.52 +/- 0.18 (± 0.03 ;slope) (± 0.06 ;metallicity)(^{+0.10}_{-0} ;sampling ;bias). The random error is mostly due to thegiven accuracy of the hipparcos parallaxes and the number of Cepheids inthe respective samples. The terms between parentheses indicate thepossible systematic uncertainties due to the slope of the GalacticPL-relations, the metallicity corrections, and in the K-band, due to thelimited number of stars. Recent work by Sandage et al. (1999) indicatesthat the effect of metallicity towards shorter distances may be smallerin V and I than indicated here. From this, we point out the importanceof obtaining NIR photometry for more (closeby) Cepheids, as for themoment NIR photometry is only available for 27% of the total sample.This would eliminate the possible bias due to the limited number ofstars, and would reduce the random error estimate from 0.18 to about0.10 mag. Furthermore, the sensitivity of the DM to reddening,metallicity correction and slope are smallest in the K-band. Based ondata from the ESA HP astrometry satellite.

Direct calibration of the Cepheid period-luminosity relation
After the first release of Hipparcos data, Feast & Catchpole gave anew value for the zero-point of the visual Cepheid period-luminosityrelation, based on trigonometric parallaxes. Because of the largeuncertainties on these parallaxes, the way in which individualmeasurements are weighted is of crucial importance. We thereforeconclude that the choice of the best weighting system can be aided by aMonte Carlo simulation. On the basis of such a simulation, it is shownthat (i) a cut-off in π or in σ_ππ introduces a strongbias; (ii) the zero-point is more stable when only the brightestCepheids are used; and (iii) the Feast & Catchpole weighting givesthe best zero-point and the lowest dispersion. After correction, theadopted visual period-luminosity relation is=-2.77logP-1.44+/-0.05. Moreover, we extend this study to thephotometric I band (Cousins) and obtain=-3.05logP-1.81+/-0.09.

I- and JHK-band photometry of classical Cepheids in the HIPPARCOS catalog
By correlating the \cite[Fernie et al. (1995)]{F95} electronic databaseon Cepheids with the ``resolved variable catalog'' of the hipparcosmission and the simbad catalog one finds that there are 280 Cepheids inthe hipparcos catalog. By removing W Vir stars (Type ii Cepheids),double-mode Cepheids, Cepheids with an unreliable solution in thehipparcos catalog, and stars without photometry, it turns out that thereare 248 classical Cepheids left, of which 32 are classified asfirst-overtone pulsators. For these stars the literature was searchedfor I-band and near-infrared data. Intensity-mean I-band photometry onthe Cousins system is derived for 189 stars, and intensity-mean JHK dataon the Carter system is presented for 69 stars.

Structural properties of s-Cepheid velocity curves Constraining the location of the omega_4 = 2omega_1 resonance
The light curves of the first overtone Pop. I Cepheids (s-Cepheids) showa discontinuity in their phi_ {21} vs. {P} diagram, near {P} = 3.2 day.This feature, commonly attributed to the 2:1 resonance between the firstand the fourth overtones (omega_4 ~ 2omega_1 ), is not reproduced by thehydrodynamical models. With the goal of reexamining the resonancehypothesis, we have obtained new CORAVEL radial velocity curves for 14overtone Cepheids. Together with 10 objects of Krzyt et al.( te{krzyt}), the combined sample covers the whole range of overtoneCepheid periods. The velocity Fourier parameters display a strongcharacteristic resonant behavior. In striking contrast to photometricones, they vary smoothly with the pulsation period and show no jump at3.2 day. The existing radiative hydrodynamical models match the velocityparameters very well. The center of the omega_4 = 2omega_1 resonance isestimated to occur at {P}r = 4.58\pm 0.04 day, i.e. at aperiod considerably longer than previously assumed (3.2 day). Weidentify two new members of the s-Cepheid group: MYPup and V440 Per. Based on observationscollected at the European Southern Observatory (La Silla, Chile) and atthe Observatoire de Haute-Provence (France)}

Galactic kinematics of Cepheids from HIPPARCOS proper motions
The Hipparcos proper motions of 220 Galactic Cepheids, together withrelevant ground-based photometry, have been analyzed. The effects ofGalactic rotation are very clearly seen. Mean values of the Oortconstants, A = 14.82 +/- 0.84 km/s kpc, and B = -12.37 +/- 0.64 km/skpc, and of the angular velocity of circular rotation at the sun, 27.19+/- 0.87 km/s kpc, are derived. A comparison of the value of A withvalues derived from recent radial velocity solutions confirms, withinthe errors, the zero-points of the period-luminosity andperiod-luminosity-color relations derived directly from the Hipparcostrigonometrical parallaxes of the same stars. The proper motion resultssuggest that the Galactic rotation curve is declining slowly at thesolar distance from the Galactic Center (-2.4 +/- 1.2 km/s kpc). Thecomponent of the solar motion towards the North Galactic Pole is foundto be +7.61 +/- 0.64 km/s. Based on the increased distance scale deducedin the present paper, the distance to the Galactic Center derived in aprevious radial velocity study is increased to 8.5 +/- 0.5 kpc.

Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue.
We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.

Rotation Curve of the System of Classical Cepheids and the Distance to the Galactic Center
Not Available

A magnitude-limited survey of Cepheid companions in the ultraviolet
Results of a magnitude-limited survey of classic Cepheids brighter than8th mag carried out to search for hot main-sequence companions arepresented. Spectra of 76 stars obtained with the IUE satellite in the2000-3200-A region were compared with the spectra of nonvariablesupergiants and also the single Cepheid Delta Cep to search for excessflux at 2500 A from possible companions. Photometric companions werefound for 21 percent of the sample. When the Cepheids known to be binaryfrom either orbital motion or spectra in the 1200-2000-A region areincluded, the percentage of companions rises to 29 percent. If astatistical correction from stars with orbital motion is included, 34percent have companions. This percentage is compared with that found byAbt et al. (1990) for B2-B5 main-sequence stars. If only systems withperiods longer than a year and separations not more than 30 arcsec areconsidered, only 18 percent of the B stars will become Cepheids withcompanions.

The calibration of the Stromgren photometric system for A, F and early G supergiants. I - The observational data
An empirical calibration of the Stromgren uvby-beta photometric systemfor the A, F, and early G supergiants is being derived. This paperexplains the observational program and the photometric reductiontechniques used and presents a catalog of new Stromgren photometry forover 600 A, F, and G supergiants.

The separation of S-Cepheids from classical Cepheids and a new definition of the class
Fourier decomposition has been applied to a sample of 184 classical andS-Cepheids with P less than 8 d and a careful evaluation of errors inthe determination of the parameters has been made. The S-Cepheids starsare redefined by the authors as Population I Cepheids that do not followthe Hertzsprung progression, but have a progression of their own. In thephi(21)-P plane, the S- and classical Cepheids are characterized by twosequences well separated for P less than 5.5 d. In the period range Pbetween 3d and 5.5 d, two different progressions are also present in thephi(31)-P plane while a discriminating value R(21) = 0.20 can be seen inthe R(21)-P plane. The first overtone pulsation seems to be wellestablished for S-Cepheids with P less then 3.2 d; it is probable forall the stars of the redefined subclass. A discontinuity is clearlyvisible at about 3 d in the S-Cepheid sequence in the phi(21)-P plane;it is interpreted as a resonance effect. An apparent decrease in thenumber of stars is present in the classical sequence for P less than 3d.

Cepheid radial velocity curves revisited
Existing radial velocity data of 57 type I Galactic Cepheids areanalyzed to study the systematic variation of their Fourierdecomposition with the period. All important features (including thebump progression) of the radial velocity variation are described bylow-order (third-order to fifth-order) Fourier decompositions. The dataare in fair agreement with the recent hydrodynamic results, whichimplies that the 2:1 resonance between the fundamental and secondovertone modes is the most important factor in the shaping of the radialvelocity curves. The highest quality data of this sample suggest a verytight progression of the Fourier coefficients, which indicates strictconstraints on the physical parameters or on the evolutionary history ofCepheids.

Color Excesses on a Uniform Scale for 328 Cepheids
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1990ApJS...72..153F&db_key=AST

Period changes of bright southern Cepheids
O-C diagrams have been constructed for 44 bright southern Cepheids,mainly for studying the effects of duplicity on the pulsation period.Because the light-time effect in the O-C diagrams of binary Cepheids hasto be accompanied with properly phased variations in the gamma-velocity,the radial velocities of the programme stars have been studied, as well.Light-time effect is found or suspected in eleven cases (V946 Aql, AXCir, AG Cru, BG Cru, BF Oph, AP Pup, AT Pup, Y Sgr, AP Sgr, R TrA and VVel), and a preliminary value of the orbital period is suggested for 14Cepheid binaries (V946 Aql, AX Cir, AG Cru, Y Oph, BF Oph, AP Pup, ATPup, U Sgr, Y Sgr, AP Sgr, BB Sgr, RV Sco, R TrA and V Vel). Thephenomenon of the phase jump (i.e. the return of the pulsation period toan earlier value) is present in the O-C diagram of eight binaries (UAql, YZ Car, KN Cen, S Mus, S Nor, Y Oph, U Sgr and V350 Sgr).

A cluster analysis of cepheids
The galactic distribution of 300 cepheids is considered. It is shownthat about half of them enter groups with characteristic dimensions ofseveral hundred parsecs. Due to their proximity, the cepheids in eachtaxon have similar radial velocity and period values. If the period of acepheid is associated with age, the results indicate that the clustercontains stars of approximately the same age.

Absolute and relative amplitudes of variations in radius of classical Cepheids
An analysis of observations of the absolute Delta R and relative DeltaR/R amplitudes of variations in radius of 85 galactic classical Cepheidshas yielded four empirical relations. Results are presented forlong-period, short-period, and s Cepheids. For a given group ofvariables, it is shown that Delta R and Delta R/R values increase withboth pulsation period (P) values and with P(Delta V) values (where DeltaV is the amplitude of light variations).

Classical Cepheids - Their distances and space distribution
A simplified method of calculating classical Cepheid distances isproposed. It is based on photometric data, without the use of thereddenings. By means of results obtained in this way the followingproblems are discussed: Cepheid double and more numerous aggregates andproperties of the cluster and association Cepheid.

Додај нови чланак


Линкови у сродству са темом

  • - Нема линкова -
Додај нови линк


Чланови следећих група \:


Посматрања и Астрометриски подаци

Сазвежђа:Крма
Ректацензија:07h57m45.67s
Deклинација:-40°07'24.1"
Apparent магнитуда:7.338
Даљина:934.579 parsecs
Proper motion RA:-7.7
Proper motion Dec:5.6
B-T magnitude:8.334
V-T magnitude:7.421

Каталог и designations:
Proper имена
HD 1989HD 65592
TYCHO-2 2000TYC 7650-2909-1
USNO-A2.0USNO-A2 0450-05397667
HIPHIP 38907

→ Захтевај још каталога од VizieR