Poчetna     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     Астро Фотографије     Колекција     Форум     Blog New!     FAQ(Често постављана питања     Улогуј се  
→ Adopt this star  

HD 217813


Садржај

Слике

Уплоадјуј своје слике

DSS Images   Other Images


Везани чланци

Kinematic structure of the corona of the Ursa Major flow found using proper motions and radial velocities of single stars
Aims.We study the kinematic structure of peripheral areas of the UrsaMajoris stream (Sirius supercluster). Methods.We use diagrams ofindividual stellar apexes developed by us and the classical technique ofproper motion diagrams generalized to a star sample distributed over thesky. Results.Out of 128 cluster members we have identified threecorona (sub)structures comprised of 13, 13 and 8 stars. Thesubstructures have a spatial extension comparable to the size of thecorona. Kinematically, these groups are distinguished by their propermotions, radial velocities and by the directions of their spatialmotion. Coordinates of their apexes significantly differ from those ofthe apexes of the stream and its nucleus. Our analysis shows that thesesubstructures do not belong to known kinematic groups, such as Hyades orCastor. We find kinematic inhomogeneity of the corona of the UMa stream.

Effective temperature scale and bolometric corrections from 2MASS photometry
We present a method to determine effective temperatures, angularsemi-diameters and bolometric corrections for population I and II FGKtype stars based on V and 2MASS IR photometry. Accurate calibration isaccomplished by using a sample of solar analogues, whose averagetemperature is assumed to be equal to the solar effective temperature of5777 K. By taking into account all possible sources of error we estimateassociated uncertainties to better than 1% in effective temperature andin the range 1.0-2.5% in angular semi-diameter for unreddened stars.Comparison of our new temperatures with other determinations extractedfrom the literature indicates, in general, remarkably good agreement.These results suggest that the effective temperaure scale of FGK starsis currently established with an accuracy better than 0.5%-1%. Theapplication of the method to a sample of 10 999 dwarfs in the Hipparcoscatalogue allows us to define temperature and bolometric correction (Kband) calibrations as a function of (V-K), [m/H] and log g. Bolometriccorrections in the V and K bands as a function of T_eff, [m/H] and log gare also given. We provide effective temperatures, angularsemi-diameters, radii and bolometric corrections in the V and K bandsfor the 10 999 FGK stars in our sample with the correspondinguncertainties.

IRS Spectra of Solar-Type Stars: A Search for Asteroid Belt Analogs
We report the results of a spectroscopic search for debris diskssurrounding 41 nearby solar-type stars, including eight planet-bearingstars, using the Infrared Spectrometer (IRS) on the Spitzer SpaceTelescope. With the accurate relative photometry of the IRS between 7and 34 μm we are able to look for excesses as small as ~2% ofphotospheric levels, with particular sensitivity to weak spectralfeatures. For stars with no excess, the 3 σ upper limit in a bandat 30-34 μm corresponds to ~75 times the brightness of our zodiacaldust cloud. Comparable limits at 8.5-13 μm correspond to ~1400 timesthe brightness of our zodiacal dust cloud. These limits correspond tomaterial located within the <1 to ~5 AU region that, in our solarsystem, originates predominantly from debris associated with theasteroid belt. We find excess emission longward of ~25 μm from fivestars, of which four also show excess emission at 70 μm. Thisemitting dust must be located in a region starting around 5-10 AU. Onestar has 70 μm emission but no IRS excess. In this case, the emittingregion must begin outside 10 AU; this star has a known radial velocityplanet. Only two stars of the five show emission shortward of 25 μm,where spectral features reveal the presence of a population of small,hot dust grains emitting in the 7-20 μm band. One of these stars, HD72905, is quite young (300 Myr), while the other, HD 69830, is olderthan 2 Gyr. The data presented here strengthen the results of previousstudies to show that excesses at 25 μm and shorter are rare: only 1out of 40 stars older than 1 Gyr or ~2.5% shows an excess. Asteroidbelts 10-30 times more massive than our own appear are rare amongmature, solar-type stars.

Frequency of Debris Disks around Solar-Type Stars: First Results from a Spitzer MIPS Survey
We have searched for infrared excesses around a well-defined sample of69 FGK main-sequence field stars. These stars were selected withoutregard to their age, metallicity, or any previous detection of IRexcess; they have a median age of ~4 Gyr. We have detected 70 μmexcesses around seven stars at the 3 σ confidence level. Thisextra emission is produced by cool material (<100 K) located beyond10 AU, well outside the ``habitable zones'' of these systems andconsistent with the presence of Kuiper Belt analogs with ~100 times moreemitting surface area than in our own planetary system. Only one star,HD 69830, shows excess emission at 24 μm, corresponding to dust withtemperatures >~300 K located inside of 1 AU. While debris disks withLdust/L*>=10-3 are rare around oldFGK stars, we find that the disk frequency increases from 2%+/-2% forLdust/L*>=10-4 to 12%+/-5% forLdust/L*>=10-5. This trend in thedisk luminosity distribution is consistent with the estimated dust inour solar system being within an order of magnitude greater or less thanthe typical level around similar nearby stars. Although there is nocorrelation of IR excess with metallicity or spectral type, there is aweak correlation with stellar age, with stars younger than a gigayearmore likely to have excess emission.

Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs
We present a uniform catalog of stellar properties for 1040 nearby F, G,and K stars that have been observed by the Keck, Lick, and AAT planetsearch programs. Fitting observed echelle spectra with synthetic spectrayielded effective temperature, surface gravity, metallicity, projectedrotational velocity, and abundances of the elements Na, Si, Ti, Fe, andNi, for every star in the catalog. Combining V-band photometry andHipparcos parallaxes with a bolometric correction based on thespectroscopic results yielded stellar luminosity, radius, and mass.Interpolating Yonsei-Yale isochrones to the luminosity, effectivetemperature, metallicity, and α-element enhancement of each staryielded a theoretical mass, radius, gravity, and age range for moststars in the catalog. Automated tools provide uniform results and makeanalysis of such a large sample practical. Our analysis method differsfrom traditional abundance analyses in that we fit the observed spectrumdirectly, rather than trying to match equivalent widths, and wedetermine effective temperature and surface gravity from the spectrumitself, rather than adopting values based on measured photometry orparallax. As part of our analysis, we determined a new relationshipbetween macroturbulence and effective temperature on the main sequence.Detailed error analysis revealed small systematic offsets with respectto the Sun and spurious abundance trends as a function of effectivetemperature that would be inobvious in smaller samples. We attempted toremove these errors by applying empirical corrections, achieving aprecision per spectrum of 44 K in effective temperature, 0.03 dex inmetallicity, 0.06 dex in the logarithm of gravity, and 0.5 kms-1 in projected rotational velocity. Comparisons withprevious studies show only small discrepancies. Our spectroscopicallydetermined masses have a median fractional precision of 15%, but theyare systematically 10% higher than masses obtained by interpolatingisochrones. Our spectroscopic radii have a median fractional precisionof 3%. Our ages from isochrones have a precision that variesdramatically with location in the Hertzsprung-Russell diagram. We planto extend the catalog by applying our automated analysis technique toother large stellar samples.

The Planet-Metallicity Correlation
We have recently carried out spectral synthesis modeling to determineTeff, logg, vsini, and [Fe/H] for 1040 FGK-type stars on theKeck, Lick, and Anglo-Australian Telescope planet search programs. Thisis the first time that a single, uniform spectroscopic analysis has beenmade for every star on a large Doppler planet search survey. We identifya subset of 850 stars that have Doppler observations sufficient todetect uniformly all planets with radial velocity semiamplitudes K>30m s-1 and orbital periods shorter than 4 yr. From this subsetof stars, we determine that fewer than 3% of stars with-0.5<[Fe/H]<0.0 have Doppler-detected planets. Above solarmetallicity, there is a smooth and rapid rise in the fraction of starswith planets. At [Fe/H]>+0.3 dex, 25% of observed stars have detectedgas giant planets. A power-law fit to these data relates the formationprobability for gas giant planets to the square of the number of metalatoms. High stellar metallicity also appears to be correlated with thepresence of multiple-planet systems and with the total detected planetmass. This data set was examined to better understand the origin of highmetallicity in stars with planets. None of the expected fossilsignatures of accretion are observed in stars with planets relative tothe general sample: (1) metallicity does not appear to increase as themass of the convective envelopes decreases, (2) subgiants with planetsdo not show dilution of metallicity, (3) no abundance variations for Na,Si, Ti, or Ni are found as a function of condensation temperature, and(4) no correlations between metallicity and orbital period oreccentricity could be identified. We conclude that stars with extrasolarplanets do not have an accretion signature that distinguishes them fromother stars; more likely, they are simply born in higher metallicitymolecular clouds.Based on observations obtained at Lick and Keck Observatories, operatedby the University of California, and the Anglo-Australian Observatories.

Chromospheric Ca II Emission in Nearby F, G, K, and M Stars
We present chromospheric Ca II H and K activity measurements, rotationperiods, and ages for ~1200 F, G, K, and M type main-sequence stars from~18,000 archival spectra taken at Keck and Lick Observatories as a partof the California and Carnegie Planet Search Project. We have calibratedour chromospheric S-values against the Mount Wilson chromosphericactivity data. From these measurements we have calculated medianactivity levels and derived R'HK, stellar ages,and rotation periods from general parameterizations for 1228 stars,~1000 of which have no previously published S-values. We also presentprecise time series of activity measurements for these stars.Based on observations obtained at Lick Observatory, which is operated bythe University of California, and on observations obtained at the W. M.Keck Observatory, which is operated jointly by the University ofCalifornia and the California Institute of Technology. The KeckObservatory was made possible by the generous financial support of theW. M. Keck Foundation.

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Nearby stars of the Galactic disk and halo. III.
High-resolution spectroscopic observations of about 150 nearby stars orstar systems are presented and discussed. The study of these and another100 objects of the previous papers of this series implies that theGalaxy became reality 13 or 14 Gyr ago with the implementation of amassive, rotationally-supported population of thick-disk stars. The veryhigh star formation rate in that phase gave rise to a rapid metalenrichment and an expulsion of gas in supernovae-driven Galactic winds,but was followed by a star formation gap for no less than three billionyears at the Sun's galactocentric distance. In a second phase, then, thethin disk - our ``familiar Milky Way'' - came on stage. Nowadays ittraces the bright side of the Galaxy, but it is also embedded in a hugecoffin of dead thick-disk stars that account for a large amount ofbaryonic dark matter. As opposed to this, cold-dark-matter-dominatedcosmologies that suggest a more gradual hierarchical buildup throughmergers of minor structures, though popular, are a poor description forthe Milky Way Galaxy - and by inference many other spirals as well - if,as the sample implies, the fossil records of its long-lived stars do notstick to this paradigm. Apart from this general picture that emergeswith reference to the entire sample stars, a good deal of the presentwork is however also concerned with detailed discussions of manyindividual objects. Among the most interesting we mention the bluestraggler or merger candidates HD 165401 and HD 137763/HD 137778, thelikely accretion of a giant planet or brown dwarf on 59 Vir in itsrecent history, and HD 63433 that proves to be a young solar analog at\tau˜200 Myr. Likewise, the secondary to HR 4867, formerly suspectednon-single from the Hipparcos astrometry, is directly detectable in thehigh-resolution spectroscopic tracings, whereas the visual binary \chiCet is instead at least triple, and presumably even quadruple. Withrespect to the nearby young stars a complete account of the Ursa MajorAssociation is presented, and we provide as well plain evidence foranother, the ``Hercules-Lyra Association'', the likely existence ofwhich was only realized in recent years. On account of its rotation,chemistry, and age we do confirm that the Sun is very typical among itsG-type neighbors; as to its kinematics, it appears however not unlikelythat the Sun's known low peculiar space velocity could indeed be thecause for the weak paleontological record of mass extinctions and majorimpact events on our parent planet during the most recent Galactic planepassage of the solar system. Although the significance of thiscorrelation certainly remains a matter of debate for years to come, wepoint in this context to the principal importance of the thick disk fora complete census with respect to the local surface and volumedensities. Other important effects that can be ascribed to this darkstellar population comprise (i) the observed plateau in the shape of theluminosity function of the local FGK stars, (ii) a small thoughsystematic effect on the basic solar motion, (iii) a reassessment of theterm ``asymmetrical drift velocity'' for the remainder (i.e. the thindisk) of the stellar objects, (iv) its ability to account for the bulkof the recently discovered high-velocity blue white dwarfs, (v) itsmajor contribution to the Sun's ˜220 km s-1 rotationalvelocity around the Galactic center, and (vi) the significant flatteningthat it imposes on the Milky Way's rotation curve. Finally we note ahigh multiplicity fraction in the small but volume-complete local sampleof stars of this ancient population. This in turn is highly suggestivefor a star formation scenario wherein the few existing single stellarobjects might only arise from either late mergers or the dynamicalejection of former triple or higher level star systems.

Some anomalies in the occurrence of debris discs around main-sequence A and G stars
Debris discs consist of large dust grains that are generated bycollisions of comets or asteroids around main-sequence stars, and thequantity and distribution of debris may be used to detect the presenceof perturbing planets akin to Neptune. We use stellar and disc surveysto compare the material seen around A- and G-type main-sequence stars.Debris is detected much more commonly towards A stars, even when acomparison is made only with G stars of comparable age. Detection ratesare consistent with disc durations of ~0.5 Gyr, which may occur at anytime during the main sequence. The higher detection rate for A stars canresult from this duration being a larger fraction of the main-sequencelifetime, possibly boosted by a globally slightly larger disc mass thanfor the G-type counterparts. The disc mass range at any given age is afactor of at least ~100 and any systematic decline with time is slow,with a power law estimated to not be steeper than t-1/2.Comparison with models shows that dust can be expected as late as a fewGyr when perturbing planetesimals form slowly at large orbital radii.Currently, the Solar system has little dust because the radius of theKuiper Belt is small and hence the time-scale to produce planetesimalswas less than 1 Gyr. However, the apparently constant duration of ~0.5Gyr when dust is visible is not predicted by the models.

Dependence of coronal X-ray emission on spot-induced brightness variations in cool main sequence stars
The maximum amplitude (Amax) of spot-induced brightnessvariations from long-term V-band photometry and the ratioLX/Lbol between X-ray and bolometric luminositiesare suitable indicators of the level of magnetic activity in thephotosphere and in the corona of late-type stars, respectively. By usingthese activity indicators we investigate the dependence of coronal X-rayemission on the level of photospheric starspot activity in a homogeneoussample of low mass main sequence field and cluster stars of differentages (IC 2602, IC 4665,IC 2391, alpha Persei,Pleiades and Hyades). First, theactivity-rotation connection at the photospheric level is re-analysed,as well as its dependence on spectral type and age. The upper envelopeof Amax increases monotonically with decreasing rotationalperiod (P) and Rossby number (R0) showing a break around 1.1d that separates two rotation regimes where the starspot activity showsdifferent behaviours. The Amax-P andAmax-R0 relations are fitted with linear,exponential and power laws to look for the function which bestrepresents the trend of the data. The highest values of Amaxare found among K-type stars and at the ages of alphaPersei and Pleiades. We also analyse theactivity-rotation connection at the coronal level as well as itsdependence on spectral type. The level of X-ray emission increases withincreasing rotation rate up to a saturation level. The rotational periodat which saturation occurs is colour-dependent and increases withadvancing spectral type. Also the LX/Lbol-P andLX/Lbol-R0 relations are fitted withlinear, exponential and power laws to look for the best fittingfunction. Among the fastest rotating stars (P<=0.3 d) there isevidence of super-saturation. Also the highest values ofLXLbol are found among K-type stars. Finally, thephotospheric-coronal activity connection is investigated by using forthe first time the largest ever sample of light curve amplitudes asindicators of the magnetic filling factor. The activity parametersLX/Lbol and Amax are found to becorrelated with each other, thus confirming the dependence of coronalactivity on photospheric magnetic fields. More precisely, theLX/Lbol-Amax distribution shows thepresence of an upper envelope, which is constant at theLX/Lbol =~ -3.0 saturation level, and of a lowerenvelope. The best fit to the lower envelope is given by a power lawwith steepness decreasing from F-G to M spectral types. However, it isconsidered a tentative result, since the fit reduced chi-squares arelarge. Such spectral-type dependence may be related to a colourdependence of Amax on the total starspot filling factor, aswell as to the coronal emission being possibly more sensitive tostarspot activity variations in F- and G-type than in M-type stars. TheLX/Lbol-Amax mean values for eachcluster in our sample decrease monotonically with increasing age,showing that the levels of photospheric and coronal activity evolve intime according to a single power law till the Sun's age.Tables of the photometric and X-ray data sets are only available inelectronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/410/671

Contributions to the Nearby Stars (NStars) Project: Spectroscopy of Stars Earlier than M0 within 40 Parsecs: The Northern Sample. I.
We have embarked on a project, under the aegis of the Nearby Stars(NStars)/Space Interferometry Mission Preparatory Science Program, toobtain spectra, spectral types, and, where feasible, basic physicalparameters for the 3600 dwarf and giant stars earlier than M0 within 40pc of the Sun. In this paper, we report on the results of this projectfor the first 664 stars in the northern hemisphere. These resultsinclude precise, homogeneous spectral types, basic physical parameters(including the effective temperature, surface gravity, and overallmetallicity [M/H]), and measures of the chromospheric activity of ourprogram stars. Observed and derived data presented in this paper arealso available on the project's Web site.

The Hamburg/RASS Catalogue of optical identifications. Northern high-galactic latitude ROSAT Bright Source Catalogue X-ray sources
We present the Hamburg/RASS Catalogue (HRC) of optical identificationsof X-ray sources at high-galactic latitude. The HRC includes all X-raysources from the ROSAT Bright Source Catalogue (RASS-BSC) with galacticlatitude |b| >=30degr and declination delta >=0degr . In thispart of the sky covering ~ 10 000 deg2 the RASS-BSC contains5341 X-ray sources. For the optical identification we used blue Schmidtprism and direct plates taken for the northern hemisphere Hamburg QuasarSurvey (HQS) which are now available in digitized form. The limitingmagnitudes are 18.5 and 20, respectively. For 82% of the selectedRASS-BSC an identification could be given. For the rest either nocounterpart was visible in the error circle or a plausibleidentification was not possible. With ~ 42% AGN represent the largestgroup of X-ray emitters, ~ 31% have a stellar counterpart, whereasgalaxies and cluster of galaxies comprise only ~ 4% and ~ 5%,respectively. In ~ 3% of the RASS-BSC sources no object was visible onour blue direct plates within 40\arcsec around the X-ray sourceposition. The catalogue is used as a source for the selection of(nearly) complete samples of the various classes of X-ray emitters.

Stellar Kinematic Groups. II. A Reexamination of the Membership, Activity, and Age of the Ursa Major Group
Utilizing Hipparcos parallaxes, original radial velocities and recentliterature values, new Ca II H and K emission measurements,literature-based abundance estimates, and updated photometry (includingrecent resolved measurements of close doubles), we revisit the UrsaMajor moving group membership status of some 220 stars to produce afinal clean list of nearly 60 assured members, based on kinematic andphotometric criteria. Scatter in the velocity dispersions and H-Rdiagram is correlated with trial activity-based membership assignments,indicating the usefulness of criteria based on photometric andchromospheric emission to examine membership. Closer inspection,however, shows that activity is considerably more robust at excludingmembership, failing to do so only for <=15% of objects, perhapsconsiderably less. Our UMa members demonstrate nonzero vertex deviationin the Bottlinger diagram, behavior seen in older and recent studies ofnearby young disk stars and perhaps related to Galactic spiralstructure. Comparison of isochrones and our final UMa group membersindicates an age of 500+/-100 Myr, some 200 Myr older than thecanonically quoted UMa age. Our UMa kinematic/photometric members' meanchromospheric emission levels, rotational velocities, and scattertherein are indistinguishable from values in the Hyades and smaller thanthose evinced by members of the younger Pleiades and M34 clusters,suggesting these characteristics decline rapidly with age over 200-500Myr. None of our UMa members demonstrate inordinately low absolutevalues of chromospheric emission, but several may show residual fluxes afactor of >=2 below a Hyades-defined lower envelope. If one defines aMaunder-like minimum in a relative sense, then the UMa results maysuggest that solar-type stars spend 10% of their entire main-sequencelives in periods of precipitously low activity, which is consistent withestimates from older field stars. As related asides, we note six evolvedstars (among our UMa nonmembers) with distinctive kinematics that liealong a 2 Gyr isochrone and appear to be late-type counterparts to diskF stars defining intermediate-age star streams in previous studies,identify a small number of potentially very young but isolated fieldstars, note that active stars (whether UMa members or not) in our samplelie very close to the solar composition zero-age main sequence, unlikeHipparcos-based positions in the H-R diagram of Pleiades dwarfs, andargue that some extant transformations of activity indices are notadequate for cool dwarfs, for which Ca II infrared triplet emissionseems to be a better proxy than Hα-based values for Ca II H and Kindices.

Radial Velocities for 889 Late-Type Stars
We report radial velocities for 844 FGKM-type main-sequence and subgiantstars and 45 K giants, most of which had either low-precision velocitymeasurements or none at all. These velocities differ from the standardstars of Udry et al. by 0.035 km s-1 (rms) for the 26 FGKstandard stars in common. The zero point of our velocities differs fromthat of Udry et al.: =+0.053km s-1. Thus, these new velocities agree with the best knownstandard stars both in precision and zero point, to well within 0.1 kms-1. Nonetheless, both these velocities and the standardssuffer from three sources of systematic error, namely, convectiveblueshift, gravitational redshift, and spectral type mismatch of thereference spectrum. These systematic errors are here forced to be zerofor G2 V stars by using the Sun as reference, with Vesta and day sky asproxies. But for spectral types departing from solar, the systematicerrors reach 0.3 km s-1 in the F and K stars and 0.4 kms-1 in M dwarfs. Multiple spectra were obtained for all 889stars during 4 years, and 782 of them exhibit velocity scatter less than0.1 km s-1. These stars may serve as radial velocitystandards if they remain constant in velocity. We found 11 newspectroscopic binaries and report orbital parameters for them. Based onobservations obtained at the W. M. Keck Observatory, which is operatedjointly by the University of California and the California Institute ofTechnology, and on observations obtained at the Lick Observatory, whichis operated by the University of California.

Stellar atmospheres of nearby young solar analogs
High-resolution (/R~90,000) spectra of 34 nearby, young Sun-like starswere analyzed using stellar atmosphere models to estimate effectivephotosphere temperatures, surface gravities, and the abundance ofcertain heavy elements (C, Na, Mg, Si, S, Ca, Ti, Fe, and Ni). Theeffective temperatures derived from spectroscopy were compared withtemperatures estimated using optical and near-infrared photometry. Inmany cases the spectroscopic temperatures are significantly higher thanthe photometric estimates, possibly as a result of spottedness orchromospheric activity on these active stars. Values of effectivetemperature, surface gravity, and luminosity were compared totheoretical stellar evolution tracks and the evolutionary status ofthese objects was evaluated. The correlation between heavy elementabundance patterns and kinematics (space motion) was also examined. Twonearby stars that were tentatively assigned to the Hyades cluster basedon kinematics have Fe abundances that are also consistent withmembership in that cluster. Members of the Ursa Major kinematic groupexhibit a range of [Fe/H] values but have monotonic [Si/Fe]. These twoobservations suggest that heterogeneous incorporation of the heavyelements into protostars is creating the variation in metallicity. LocalAssociation members have a distinctly different Si/Fe that probablyreflects their distinct origin and chemical inheritance.

Late-type members of young stellar kinematic groups - I. Single stars
This is the first paper of a series aimed at studying the properties oflate-type members of young stellar kinematic groups. We concentrate ourstudy on classical young moving groups such as the Local Association(Pleiades moving group, 20-150Myr), IC 2391 supercluster (35Myr), UrsaMajor group (Sirius supercluster, 300Myr), and Hyades supercluster(600Myr), as well as on recently identified groups such as the Castormoving group (200Myr). In this paper we compile a preliminary list ofsingle late-type possible members of some of these young stellarkinematic groups. Stars are selected from previously established membersof stellar kinematic groups based on photometric and kinematicproperties as well as from candidates based on other criteria such astheir level of chromospheric activity, rotation rate and lithiumabundance. Precise measurements of proper motions and parallaxes takenfrom the Hipparcos Catalogue, as well as from the Tycho-2 Catalogue, andpublished radial velocity measurements are used to calculate theGalactic space motions (U, V, W) and to apply Eggen's kinematic criteriain order to determine the membership of the selected stars to thedifferent groups. Additional criteria using age-dating methods forlate-type stars will be applied in forthcoming papers of this series. Afurther study of the list of stars compiled here could lead to a betterunderstanding of the chromospheric activity and their age evolution, aswell as of the star formation history in the solar neighbourhood. Inaddition, these stars are also potential search targets for directimaging detection of substellar companions.

A revision of the solar neighbourhood metallicity distribution
We present a revised metallicity distribution of dwarfs in the solarneighbourhood. This distribution is centred on solar metallicity. Weshow that previous metallicity distributions, selected on the basis ofspectral type, are biased against stars with solar metallicity orhigher. A selection of G-dwarf stars is inherently biased againstmetal-rich stars and is not representative of the solar neighbourhoodmetallicity distribution. Using a sample selected on colour, we obtain adistribution where approximately half the stars in the solarneighbourhood have metallicities higher than [Fe/H]=0. The percentage ofmid-metal-poor stars ([Fe/H]<-0.5) is approximately 4 per cent, inagreement with present estimates of the thick disc. In order to have ametallicity distribution comparable to chemical evolution modelpredictions, we convert the star fraction to mass fraction, and showthat another bias against metal-rich stars affects dwarf metallicitydistributions, due to the colour (or spectral type) limits of thesamples. Reconsidering the corrections resulting from the increasingthickness of the stellar disc with age, we show that the simpleclosed-box model with no instantaneous recycling approximation gives areasonable fit to the observed distribution. Comparisons with theage-metallicity relation and abundance ratios suggest that the simpleclosed-box model may be a viable model of the chemical evolution of theGalaxy at solar radius.

MT Pegasi (= HD 217813) - A Young Sun with Starspots
Not Available

Spectroscopy and Photometry of Nearby Young Solar Analogs
We present new photometry and spectroscopy of 34 stars from a catalog of38 nearby (d<25 pc) G and K dwarfs selected as analogs to the earlySun. We report that the least active star in our sample is also slowlyrotating and probably of solar age. Two other stars appear to be evolvedobjects that have recently acquired angular momentum. A fourth star maybe a spectroscopic binary. Many of the other stars belong to previouslyidentified common proper-motion groups. Space motions, lithiumabundances, and Ca II emission of these stars suggest ages between 70and 800 Myr.

The ROSAT Bright Survey: II. Catalogue of all high-galactic latitude RASS sources with PSPC countrate CR > 0.2 s-1
We present a summary of an identification program of the more than 2000X-ray sources detected during the ROSAT All-Sky Survey (Voges et al.1999) at high galactic latitude, |b| > 30degr , with countrate above0.2 s-1. This program, termed the ROSAT Bright Survey RBS, isto more than 99.5% complete. A sub-sample of 931 sources with countrateabove 0.2 s-1 in the hard spectral band between 0.5 and 2.0keV is to 100% identified. The total survey area comprises 20391deg2 at a flux limit of 2.4 x 10-12 ergcm-2 s-1 in the 0.5 - 2.0 keV band. About 1500sources of the complete sample could be identified by correlating theRBS with SIMBAD and the NED. The remaining ~ 500 sources were identifiedby low-resolution optical spectroscopy and CCD imaging utilizingtelescopes at La Silla, Calar Alto, Zelenchukskaya and Mauna Kea. Apartfrom completely untouched sources, catalogued clusters and galaxieswithout published redshift as well as catalogued galaxies with unusualhigh X-ray luminosity were included in the spectroscopic identificationprogram. Details of the observations with an on-line presentation of thefinding charts and the optical spectra will be published separately.Here we summarize our identifications in a table which contains opticaland X-ray information for each source. As a result we present the mostmassive complete sample of X-ray selected AGNs with a total of 669members and a well populated X-ray selected sample of 302 clusters ofgalaxies with redshifts up to 0.70. Three fields studied by us remainwithout optical counterpart (RBS0378, RBS1223, RBS1556). While the firstis a possible X-ray transient, the two latter are isolated neutron starcandidates (Motch et al. 1999, Schwope et al. 1999).

A search for star formation in the translucent clouds MBM7 and MBM55
The star formation capability of two molecular clouds at high galacticlatitude ( | b | > 30(deg) ) is investigated. Possible pre-mainsequence stars in and around the translucent clouds MBM7 and MBM55 havebeen identified via their X-ray emission by inspecting ROSAT All-SkySurvey observations of the clouds and environs and ROSAT pointedobservations of the high-density cores within the clouds. Follow-upoptical spectroscopy of the stellar X-ray sources with V <= 15.5 magwas conducted with the 1.5-m Fred Lawrence Whipple Observatory telescopeto identify standard signatures of pre-main sequence stars (LiI<~mbda6708 Angstroms absorption and Hα emission). We found 11stars which have lithium equivalent widths, W(Li), above our detectionthreshold. Three of the stars with lithium also have weak Hαemission. Relative ages for the stars with lithium are estimated bytheir position on an W(Li) vs. T_eff diagram. A calibration derived fromdata for several clusters with known ages indicates the stars are olderthan the translucent high-latitude clouds. This conclusion is supportedby a comparison with theoretical evolutionary tracks of the stars fromour sample for which we have distance measurements from Hipparcos. Wefind it is unlikely that any of the X-ray active, lithium-rich stars weidentified have formed in the clouds in question. Theoretical andobservational arguments support this conclusion and render unlikely thepossibility that low-extinction translucent clouds are the sites of starformation. Table~3 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html.

Nearby Young Solar Analogs. I. Catalog and Stellar Characteristics
We present a catalog of 38 young solar analogs within 25 pc, stars thatare uniquely well suited for observations of their circumstellarenvironments to improve our understanding of conditions within the solarsystem during the Hadean/early Archean eons (prior to 3.8 Gyr ago).These G and early K stars were selected from the Hipparcos astrometriccatalog based on lack of known stellar companions within 800 AU,bolometric luminosities close to that of the zero-age Sun and consistentwith the zero-age main sequence, and ROSAT X-ray luminositiescommensurate with the higher rotation rate and level of dynamo-drivenactivity in solar-mass stars less than 0.8 Gyr old. While many of theseobjects have been previously identified, this sample is novel in tworespects: The selection criteria specifically consider the planetaryenvironment, and the selection is uniform and all-sky. The X-rayemission from these young analogs is spectrally soft and consistent witha coronal origin. Calcium H and K emission, rotation periods, lithiumabundances, and kinematics support an age range of 0.2-0.8 Gyr for mostof these stars. Three stars have exceptionally high space motions withrespect to the local standard of rest and may be old disk or halo starsthat are anomalously X-ray luminous.

The 73rd Name-List of Variable Stars
Not Available

Properties of Sun-like Stars with Planets: 51 Pegasi, 47 Ursae Majoris, 70 Virginis, and HD 114762
Radial velocity variations have revealed planets orbiting 51 Peg, 47UMa, and 70 Vir, and a low-mass companion orbiting HD 114762. We analyzeparallel records of photometric measurements in Stromgren b and y andJohnson V, R, and I passbands and Ca II H and K fluxes in those stars.In the case of 51 Peg, the high precision of the differentialphotometric measurements made by the 0.75 m Automatic PhotoelectricTelescope and the nonvariability of the star would allow the detectionof a transit of a planet as small as Earth (corresponding to anamplitude of 0.0001 mag) if its orbit were nearly coplanar with our lineof sight. No transits were observed. For 51 Peg and 70 Vir, the upperlimit of nondetection of photometric variability at their companion'sorbital periods is Delta (b + y)/2 < 0.0002 +/- 0.0002 mag. For HD114762, it is Delta V < 0.0007 +/- 0.0004 mag. Such small amplitudesof photometric variability seem to eliminate periodic velocityvariations expected from p-mode oscillations. All four stars aremagnetically quiet; that is, they lack the typical Ca II and photometricvariability due to rotation and activity cycles expected from surfacemagnetic activity in solar-type stars. Such quiescence produces aninteresting observational bias that favors the detection of planets fromlow-amplitude radial velocity or photometric variations by minimizingthe contribution from intrinsic stellar variability. We discuss thecircumstances for which the probability of planet detections is improvedby the reduced level of variability from surface magnetic activity in Gand K stars. Stars with low variability in surface activity should bethe best candidates for planet searches using radial velocity andphotometric techniques. Searches for planets around younger, more activestars will be impeded by variations in velocity or brightness caused bytime-varying surface features. The Ca II H and K fluxes indicate thatall four stars are older than 5 Gyr. Ages were estimated from theaverage levels of Ca II H and K fluxes and an existing relationship ofthe decrease of Ca II fluxes with age on the lower main sequence andwere drawn from previous results based on theoretical isochrone fitting.Values of the projected rotational velocity, v sin i, are determined for70 Vir and 47 UMa from high-resolution spectra.

Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue.
We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.

51 Pegasi
IAUC 6261 available at Central Bureau for Astronomical Telegrams.IAUC 6261 available at Central Bureau for Astronomical Telegrams.

Stroemgren photometry of F- and G-type stars brighter than V = 9.6. I. UVBY photometry
Within the framework of a large photometric observing program, designedto investigate the Galaxy's structure and evolution, Hβ photometryis being made for about 9000 stars. As a by-product, supplementary uvbyphotometry has been made. The results are presented in a cataloguecontaining 6924 uvby observations of 6190 stars, all south ofδ=+38deg. The overall internal rms errors of one observation(transformed to the standard system) of a program star in the interval6.5

A study of solar-type stars.
Not Available

The 71st Name-List of Variable Stars
Not Available

Додај нови чланак


Линкови у сродству са темом

  • - Нема линкова -
Додај нови линк


Чланови следећих група \:


Посматрања и Астрометриски подаци

Сазвежђа:Пегаз
Ректацензија:23h03m04.98s
Deклинација:+20°55'06.9"
Apparent магнитуда:6.674
Даљина:24.278 parsecs
Proper motion RA:-116.7
Proper motion Dec:-27.5
B-T magnitude:7.416
V-T magnitude:6.736

Каталог и designations:
Proper имена
HD 1989HD 217813
TYCHO-2 2000TYC 1717-687-1
USNO-A2.0USNO-A2 1050-20542820
HIPHIP 113829

→ Захтевај још каталога од VizieR