Home     Evrende yaþayabilmek için    
Services
    Niçin Edinmelisiniz     En fazla Destek olanlar     Gökyüzü görüntüsü     Koleksiyon     Forum     Blog New!     SSS     Giriþ  
→ Adopt this star  

TYC 1656-512-1


Ýçindekiler

Görüntüler

Resim Yükleyin

DSS Images   Other Images


Ýlgili Makaleler

The PASTEL catalogue of stellar parameters
Aims: The PASTEL catalogue is an update of the [Fe/H] catalogue,published in 1997 and 2001. It is a bibliographical compilation ofstellar atmospheric parameters providing (T_eff, log g, [Fe/H])determinations obtained from the analysis of high resolution, highsignal-to-noise spectra, carried out with model atmospheres. PASTEL alsoprovides determinations of the one parameter T_eff based on variousmethods. It is aimed in the future to provide also homogenizedatmospheric parameters and elemental abundances, radial and rotationalvelocities. A web interface has been created to query the catalogue onelaborated criteria. PASTEL is also distributed through the CDS databaseand VizieR. Methods: To make it as complete as possible, the mainjournals have been surveyed, as well as the CDS database, to findrelevant publications. The catalogue is regularly updated with newdeterminations found in the literature. Results: As of Febuary2010, PASTEL includes 30151 determinations of either T_eff or (T_eff,log g, [Fe/H]) for 16 649 different stars corresponding to 865bibliographical references. Nearly 6000 stars have a determination ofthe three parameters (T_eff, log g, [Fe/H]) with a high qualityspectroscopic metallicity.The catalogue can be queried through a dedicated web interface at http://pastel.obs.u-bordeaux1.fr/.It is also available in electronic form at the Centre de DonnéesStellaires in Strasbourg (http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=B/pastel),at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) orvia http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/515/A111

A Keck HIRES Doppler Search for Planets Orbiting Metal-Poor Dwarfs. II. On the Frequency of Giant Planets in the Metal-Poor Regime
We present an analysis of three years of precision radial velocity (RV)measurements of 160 metal-poor stars observed with HIRES on the Keck 1telescope. We report on variability and long-term velocity trends foreach star in our sample. We identify several long-term, low-amplitude RVvariables worthy of followup with direct imaging techniques. We placelower limits on the detectable companion mass as a function of orbitalperiod. Our survey would have detected, with a 99.5% confidence level,over 95% of all companions on low-eccentricity orbits with velocitysemiamplitude K gsim 100 m s–1, orMp sin i gsim 3.0 M J(P/yr)(1/3), fororbital periods P lsim 3 yr. None of the stars in our sampleexhibits RV variations compatible with the presence of Jovian planetswith periods shorter than the survey duration. The resulting averagefrequency of gas giants orbiting metal-poor dwarfs with–2.0lsim[Fe/H]lsim–0.6 is fp < 0.67% (at the1σ confidence level). We examine the implications of this nullresult in the context of the observed correlation between the rate ofoccurrence of giant planets and the metallicity of their main-sequencesolar-type stellar hosts. By combining our data set with the Fischer& Valenti (2005) uniform sample, we confirm that the likelihood of astar to harbor a planet more massive than Jupiter within 2 AU is asteeply rising function of the host's metallicity. However, the data forstars with –1.0lsim[Fe/H]lsim0.0 are compatible, in a statisticalsense, with a constant occurrence rate fp sime 1%. Ourresults can usefully inform theoretical studies of the process ofgiant-planet formation across two orders of magnitude in metallicity.

Chemical Inhomogeneities in the Milky Way Stellar Halo
We have compiled a sample of 699 stars from the recent literature withdetailed chemical abundance information (spanning –4.2lsim [Fe/H]lsim+0.3), and we compute their space velocities and Galactic orbitalparameters. We identify members of the inner and outer stellar halopopulations in our sample based only on their kinematic properties andthen compare the abundance ratios of these populations as a function of[Fe/H]. In the metallicity range where the two populations overlap(–2.5lsim [Fe/H] lsim–1.5), the mean [Mg/Fe] of the outerhalo is lower than the inner halo by –0.1 dex. For [Ni/Fe] and[Ba/Fe], the star-to-star abundance scatter of the inner halo isconsistently smaller than in the outer halo. The [Na/Fe], [Y/Fe],[Ca/Fe], and [Ti/Fe] ratios of both populations show similar means andlevels of scatter. Our inner halo population is chemically homogeneous,suggesting that a significant fraction of the Milky Way stellar halooriginated from a well-mixed interstellar medium. In contrast, our outerhalo population is chemically diverse, suggesting that anothersignificant fraction of the Milky Way stellar halo formed in remoteregions where chemical enrichment was dominated by local supernovaevents. We find no abundance trends with maximum radial distance fromthe Galactic center or maximum vertical distance from the Galactic disk.We also find no common kinematic signature for groups of metal-poorstars with peculiar abundance patters, such as the α-poor stars orstars showing unique neutron-capture enrichment patterns. Several starsand dwarf spheroidal systems with unique abundance patterns spend themajority of their time in the distant regions of the Milky Way stellarhalo, suggesting that the true outer halo of the Galaxy may have littleresemblance to the local stellar halo.

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

Effective temperature scale and bolometric corrections from 2MASS photometry
We present a method to determine effective temperatures, angularsemi-diameters and bolometric corrections for population I and II FGKtype stars based on V and 2MASS IR photometry. Accurate calibration isaccomplished by using a sample of solar analogues, whose averagetemperature is assumed to be equal to the solar effective temperature of5777 K. By taking into account all possible sources of error we estimateassociated uncertainties to better than 1% in effective temperature andin the range 1.0-2.5% in angular semi-diameter for unreddened stars.Comparison of our new temperatures with other determinations extractedfrom the literature indicates, in general, remarkably good agreement.These results suggest that the effective temperaure scale of FGK starsis currently established with an accuracy better than 0.5%-1%. Theapplication of the method to a sample of 10 999 dwarfs in the Hipparcoscatalogue allows us to define temperature and bolometric correction (Kband) calibrations as a function of (V-K), [m/H] and log g. Bolometriccorrections in the V and K bands as a function of T_eff, [m/H] and log gare also given. We provide effective temperatures, angularsemi-diameters, radii and bolometric corrections in the V and K bandsfor the 10 999 FGK stars in our sample with the correspondinguncertainties.

Abundance trends in kinematical groups of the Milky Way's disk
We have compiled a large catalogue of metallicities and abundance ratiosfrom the literature in order to investigate abundance trends of severalalpha and iron peak elements in the thin disk and the thick disk of theGalaxy. The catalogue includes 743 stars with abundances of Fe, O, Mg,Ca, Ti, Si, Na, Ni and Al in the metallicity range -1.30 < [Fe/H]< +0.50. We have checked that systematic differences betweenabundances measured in the different studies were lower than randomerrors before combining them. Accurate distances and proper motions fromHipparcos and radial velocities from several sources have been retreivedfor 639 stars and their velocities (U, V, W) and galactic orbits havebeen computed. Ages of 322 stars have been estimated with a Bayesianmethod of isochrone fitting. Two samples kinematically representative ofthe thin and thick disks have been selected, taking into account theHercules stream which is intermediate in kinematics, but with a probabledynamical origin. Our results show that the two disks are chemicallywell separated, they overlap greatly in metallicity and both showparallel decreasing alpha elements with increasing metallicity, in theinterval -0.80 < [Fe/H] < -0.30. The Mg enhancement with respectto Fe of the thick disk is measured to be 0.14 dex. An even largerenhancement is observed for Al. The thick disk is clearly older than thethin disk with tentative evidence of an AMR over 2-3 Gyr and a hiatus instar formation before the formation of the thin disk. We do not observea vertical gradient in the metallicity of the thick disk. The Herculesstream has properties similar to that of the thin disk, with a widerrange of metallicity. Metal-rich stars assigned to the thick disk andsuper-metal-rich stars assigned to the thin disk appear as outliers inall their properties.

A Catalog of Northern Stars with Annual Proper Motions Larger than 0.15" (LSPM-NORTH Catalog)
The LSPM catalog is a comprehensive list of 61,977 stars north of theJ2000 celestial equator that have proper motions larger than 0.15"yr-1 (local-background-stars frame). The catalog has beengenerated primarily as a result of our systematic search for high propermotion stars in the Digitized Sky Surveys using our SUPERBLINK software.At brighter magnitudes, the catalog incorporates stars and data from theTycho-2 Catalogue and also, to a lesser extent, from the All-SkyCompiled Catalogue of 2.5 million stars. The LSPM catalog considerablyexpands over the old Luyten (Luyten Half-Second [LHS] and New LuytenTwo-Tenths [NLTT]) catalogs, superseding them for northern declinations.Positions are given with an accuracy of <~100 mas at the 2000.0epoch, and absolute proper motions are given with an accuracy of ~8 masyr-1. Corrections to the local-background-stars propermotions have been calculated, and absolute proper motions in theextragalactic frame are given. Whenever available, we also give opticalBT and VT magnitudes (from Tycho-2, ASCC-2.5),photographic BJ, RF, and IN magnitudes(from USNO-B1 catalog), and infrared J, H, and Ks magnitudes(from 2MASS). We also provide an estimated V magnitude and V-J color fornearly all catalog entries, useful for initial classification of thestars. The catalog is estimated to be over 99% complete at high Galacticlatitudes (|b|>15deg) and over 90% complete at lowGalactic latitudes (|b|>15deg), down to a magnitudeV=19.0, and has a limiting magnitude V=21.0. All the northern starslisted in the LHS and NLTT catalogs have been reidentified, and theirpositions, proper motions, and magnitudes reevaluated. The catalog alsolists a large number of completely new objects, which promise to expandvery significantly the census of red dwarfs, subdwarfs, and white dwarfsin the vicinity of the Sun.Based on data mining of the Digitized Sky Surveys (DSSs), developed andoperated by the Catalogs and Surveys Branch of the Space TelescopeScience Institute (STScI), Baltimore.Developed with support from the National Science Foundation (NSF), aspart of the NASA/NSF NStars program.

Stellar Chemical Signatures and Hierarchical Galaxy Formation
To compare the chemistries of stars in the Milky Way dwarf spheroidal(dSph) satellite galaxies with stars in the Galaxy, we have compiled alarge sample of Galactic stellar abundances from the literature. Whenkinematic information is available, we have assigned the stars tostandard Galactic components through Bayesian classification based onGaussian velocity ellipsoids. As found in previous studies, the[α/Fe] ratios of most stars in the dSph galaxies are generallylower than similar metallicity Galactic stars in this extended sample.Our kinematically selected stars confirm this for the Galactic halo,thin-disk, and thick-disk components. There is marginal overlap in thelow [α/Fe] ratios between dSph stars and Galactic halo stars onextreme retrograde orbits (V<-420 km s-1), but this is notsupported by other element ratios. Other element ratios compared in thispaper include r- and s-process abundances, where we find a significantoffset in the [Y/Fe] ratios, which results in a large overabundance in[Ba/Y] in most dSph stars compared with Galactic stars. Thus, thechemical signatures of most of the dSph stars are distinct from thestars in each of the kinematic components of the Galaxy. This resultrules out continuous merging of low-mass galaxies similar to these dSphsatellites during the formation of the Galaxy. However, we do not ruleout very early merging of low-mass dwarf galaxies, since up to one-halfof the most metal-poor stars ([Fe/H]<=-1.8) have chemistries that arein fair agreement with Galactic halo stars. We also do not rule outmerging with higher mass galaxies, although we note that the LMC and theremnants of the Sgr dwarf galaxy are also chemically distinct from themajority of the Galactic halo stars. Formation of the Galaxy's thickdisk by heating of an old thin disk during a merger is also not ruledout; however, the Galaxy's thick disk itself cannot be comprised of theremnants from a low-mass (dSph) dwarf galaxy, nor of a high-mass dwarfgalaxy like the LMC or Sgr, because of differences in chemistry.The new and independent environments offered by the dSph galaxies alsoallow us to examine fundamental assumptions related to thenucleosynthesis of the elements. The metal-poor stars ([Fe/H]<=-1.8)in the dSph galaxies appear to have lower [Ca/Fe] and [Ti/Fe] than[Mg/Fe] ratios, unlike similar metallicity stars in the Galaxy.Predictions from the α-process (α-rich freeze-out) would beconsistent with this result if there have been a lack of hypernovae indSph galaxies. The α-process could also be responsible for thevery low Y abundances in the metal-poor stars in dSph's; since [La/Eu](and possibly [Ba/Eu]) are consistent with pure r-process results, thelow [Y/Eu] suggests a separate r-process site for this light(first-peak) r-process element. We also discuss SNe II rates and yieldsas other alternatives, however. In stars with higher metallicities([Fe/H]>=-1.8), contributions from the s-process are expected; [(Y,La, and Ba)/Eu] all rise as expected, and yet [Ba/Y] is still muchhigher in the dSph stars than similar metallicity Galactic stars. Thisresult is consistent with s-process contributions from lower metallicityAGB stars in dSph galaxies, and is in good agreement with the slowerchemical evolution expected in the low-mass dSph galaxies relative tothe Galaxy, such that the build-up of metals occurs over much longertimescales. Future investigations of nucleosynthetic constraints (aswell as galaxy formation and evolution) will require an examination ofmany stars within individual dwarf galaxies.Finally, the Na-Ni trend reported in 1997 by Nissen & Schuster isconfirmed in Galactic halo stars, but we discuss this in terms of thegeneral nucleosynthesis of neutron-rich elements. We do not confirm thatthe Na-Ni trend is related to the accretion of dSph galaxies in theGalactic halo.

Abundances for metal-poor stars with accurate parallaxes. I. Basic data
We present element-to-element abundance ratios measured from highdispersion spectra for 150 field subdwarfs and early subgiants withaccurate Hipparcos parallaxes (errors <20%). For 50 stars new spectrawere obtained with the UVES on Kueyen (VLT UT2), the McDonald 2.7 mtelescope, and SARG at TNG. Additionally, literature equivalent widthswere taken from the works by Nissen & Schuster, Fulbright, andProchaska et al. to complement our data. The whole sample includes boththick disk and halo stars (and a few thin disk stars); most stars havemetallicities in the range -2<[Fe/H]<-0.6. We found our data, thatof Nissen & Schuster, and that of Prochaska to be of comparablequality; results from Fulbright scatter a bit more, but they are stillof very good quality and are extremely useful due to the large size ofhis sample. The results of the present analysis will be used inforthcoming papers to discuss the chemical properties of thedissipational collapse and accretion components of our Galaxy.Based in part on data collected at the European Southern Observatory,Chile, at the MacDonald Observatory, Texas, USA, and at the TelescopioNazionale Galileo, Canary Island, INAF,Italy-Spain.}\fnmsep\thanks{Table 1 is only available in electronic format the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) orvia\resizebox{8.8cm}{2.2mm}htpp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/404/187}

Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog
We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.

A Survey of Proper-Motion Stars. XVI. Orbital Solutions for 171 Single-lined Spectroscopic Binaries
We report 25,563 radial velocity measurements for 1359 single-linedstars in the Carney-Latham sample of 1464 stars selected for high propermotion. For 171 of these, we present spectroscopic orbital solutions. Wefind no obvious difference between the binary characteristics in thehalo and the disk populations. The observed frequency is the same, andthe period distributions are consistent with the hypothesis that the twosets of binaries were drawn from the same parent population. Thissuggests that metallicity in general, and radiative opacities inparticular, have little influence over the fragmentation process thatleads to short-period binaries. All the binaries with periods shorterthan 10 days have nearly circular orbits, while the binaries withperiods longer than 20 days exhibit a wide range of eccentricities and amedian value of 0.37. For the metal-poor high-velocity halo binaries inour sample, the transition from circular to eccentric orbits appears tooccur at about 20 days, supporting the conclusion that tidalcircularization on the main sequence is important for the oldestbinaries in the Galaxy. Some of the results presented here usedobservations made with the Multiple Mirror Telescope, a joint facilityof the Smithsonian Institution and the University of Arizona.

The Galactic Thick Disk Stellar Abundances
We present first results from a program to measure the chemicalabundances of a large (N>30) sample of thick disk stars with theprincipal goal of investigating the formation history of the Galacticthick disk. We have obtained high-resolution, high signal-to-noisespectra of 10 thick disk stars with the HIRES spectrograph on the 10 mKeck I telescope. Our analysis confirms previous studies of O and Mg inthe thick disk stars, which reported enhancements in excess of the thindisk population. Furthermore, the observations of Si, Ca, Ti, Mn, Co, V,Zn, Al, and Eu all argue that the thick disk population has a distinctchemical history from the thin disk. With the exception of V and Co, thethick disk abundance patterns match or tend toward the values observedfor halo stars with [Fe/H]~-1. This suggests that the thick disk starshad a chemical enrichment history similar to the metal-rich halo stars.With the possible exception of Si, the thick disk abundance patterns arein excellent agreement with the chemical abundances observed in themetal-poor bulge stars, suggesting the two populations formed from thesame gas reservoir at a common epoch. The principal results of ouranalysis are as follows. (1) All 10 stars exhibit enhanced α/Feratios with O, Si, and Ca showing tentative trends of decreasingoverabundances with increasing [Fe/H]. In contrast, the Mg and Tienhancements are constant. (2) The light elements Na and Al are enhancedin these stars. (3) With the exception of Ni, Cr, and possibly Cu, theiron-peak elements show significant departures from the solarabundances. The stars are deficient in Mn, but overabundant in V, Co,Sc, and Zn. (4) The heavy elements Ba and Y are consistent with solarabundances, but Eu is significantly enhanced. If the trends ofdecreasing O, Si, and Ca with increasing [Fe/H] are explained by theonset of Type Ia SN, then the thick disk stars formed over the course of>~1 Gyr. We argue that this formation time-scale would rule out mostdissipational collapse scenarios for the formation of the thick disk.Models which consider the heating of an initial thin disk-either through``gradual'' heating mechanisms or a sudden merger event-are favored.These observations provide new tests of theories of nucleosynthesis inthe early universe. In particular, the enhancements of Sc, V, Co, and Znmay imply overproduction during an enhanced α-rich freeze outfueled by neutrino-driven winds. Meanwhile, the conflicting trends forMg, Ti, Ca, Si, and O pose a difficult challenge to our currentunderstanding of nucleosynthesis in Type Ia and Type II SN. The Ba/Euratios favor r-process dominated enrichment for the heavy elements,consistent with the ages (tage>10 Gyr) expected for thesestars. Finally, we discuss the impact of the thick disk abundances oninterpretations of the abundance patterns of the damped Lyαsystems. The observations of mildly enhanced Zn/Fe imply aninterpretation for the damped systems which includes a dust depletionpattern on top of a Type II SN enrichment pattern. We also argue thatthe S/Zn ratio is not a good indicator of nucleosynthetic processes.

Classification of Population II Stars in the Vilnius Photometric System. II. Results
The results of photometric classification of 848 true and suspectedPopulation II stars, some of which were found to belong to Population I,are presented. The stars were classified using a new calibrationdescribed in Paper I (Bartkevicius & Lazauskaite 1996). We combinethese results with our results from Paper I and discuss in greaterdetail the following groups of stars: UU Herculis-type stars and otherhigh-galactic-latitude supergiants, field red horizontal-branch stars,metal-deficient visual binaries, metal-deficient subgiants, stars fromthe Catalogue of Metal-deficient F--M Stars Classified Photometrically(MDPH; Bartkevicius 1993) and stars from one of the HIPPARCOS programs(Bartkevicius 1994a). It is confirmed that high galactic latitudesupergiants from the Bartaya (1979) catalog are giants or even dwarfs.Some stars, identified by Rose (1985) and Tautvaisiene (1996a) as fieldRHB stars, appear to be ordinary giants according to our classification.Some of the visual binaries studied can be considered as physical pairs.Quite a large fraction of stars from the MDPH catalog are found to havesolar metallicity. A number of new possible UU Herculis-type stars, RHBstars and metal-deficient subgiants are identified.

A survey of proper motion stars. 12: an expanded sample
We report new photometry and radial velocities for almost 500 stars fromthe Lowell Proper Motion Catalog. We combine these results with ourprior sample and rederive stellar temperatures based on the photometry,reddening, metallicities (using chi squared matching of our 22,500 lowSignal to Noise (S/N) high resolution echelle spectra with a grid ofsynthetic spectra), distances, space motions, and Galactic orbitalparameters for 1269 (kinematics) and 1261 (metallicity) of the 1464stars in the complete survey. The frequency of spectroscopic binariesfor the metal-poor ((m/H) less than or equal to -1.2) stars with periodsshorter than 3000 days is at least 15%. The spectroscopic binaryfrequency for metal-rich stars ((m/H) greater than -0.5) appears to belower, about 9%, but this may be a selection effect. We also discussspecial classes of stars, including treatment of the double-linedspectroscopic binaries, and identification of subgiants. Four possiblenew members of the class of field blue stragglers are noted. We pointout the detection of three possible new white dwarfs, six broad-lined(binary) systems, and discuss briefly the three already knownnitrogen-rich halo dwarfs. The primary result of this paper will beavailable on CD-ROM, in the form of a much larger table.

Meridian observations made with the Carlsberg Automatic Meridian Circle at Brorfelde (Copenhagen University Observatory) 1981-1982
The 7-inch transit circle instrument with which the present position andmagnitude catalog for 1577 stars with visual magnitudes greater than11.0 was obtained had been equipped with a photoelectric moving slitmicrometer and a minicomputer to control the entire observationalprocess. Positions are reduced relative to the FK4 system for each nightover the whole meridian rather than the usual narrow zones. Thepositions of the FK4 stars used in the least squares solution are alsogiven in the catalog.

Three-dimensional calssification of F-M type halo stars in the Vilnius photometric system
Not Available

A Search for Metal-Deficient Stars
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1970ApJS...22..117B&db_key=AST

Yeni bir Makale Öner


Ýlgili Baðlantýlar

  • - Baðlantý Bulunamadý -
Yeni Bir Baðlantý Öner


sonraki gruplarýn üyesi:


Gözlemler ve gökölçümü verileri

Takýmyýldýz:Yunus
Sað Açýklýk:21h02m12.17s
Yükselim:+19°54'03.2"
Görünürdeki Parlaklýk:9.087
özdevim Sað Açýklýk:5.8
özdevim Yükselim:221.5
B-T magnitude:9.864
V-T magnitude:9.152

Kataloglar ve belirtme:
Özgün isimleri
TYCHO-2 2000TYC 1656-512-1
USNO-A2.0USNO-A2 1050-19080935
HIPHIP 103812

→ VizieR 'den daha fazla katalog ve tanýmlama isteyin