Home     Evrende yaþayabilmek için    
Services
    Niçin Edinmelisiniz     En fazla Destek olanlar     Gökyüzü görüntüsü     Koleksiyon     Forum     Blog New!     SSS     Giriþ  
The star is adopted or is not available for adoption  

μ Her (Melkarth)


Ýçindekiler

Görüntüler

Resim Yükleyin

DSS Images   Other Images


Ýlgili Makaleler

Detection Limits from the McDonald Observatory Planet Search Program
Based on the long-term radial velocity surveys carried out with theMcDonald Observatory 2.7 m Harlan J. Smith Telescope from 1988 to thepresent, we derive upper limits to long-period giant planet companionsfor 31 nearby stars. Data from three phases of the McDonald Observatory2.7 m planet-search program have been merged together, and for 17objects data from the pioneering Canada-France-Hawaii Telescope radialvelocity program have also been included in the companion-limitsdetermination. For those 17 objects, the baseline of observations is inexcess of 23 yr, enabling the detection or exclusion of giant planets inorbits beyond 8 AU. We also consider the possibility of eccentric orbitsin our computations. At an orbital separation of 5.2 AU, we can excludeon average planets of Msini>~(2.0+/-1.1)MJ (e=0) andMsini>~(4.0+/-2.8)MJ (e=0.6) for 25 of the 31 stars inthis survey. However, we are not yet able to rule out ``true Jupiters,''i.e., planets of Msini~1MJ in 5.2 AU orbits. These limits areof interest for the Space Interferometry Mission, Terrestrial PlanetFinder, and Darwin missions, which will search for terrestrial planetsorbiting nearby stars, many of which are included in this work.

Dwarfs in the Local Region
We present lithium, carbon, and oxygen abundance data for a sample ofnearby dwarfs-a total of 216 stars-including samples within 15 pc of theSun, as well as a sample of local close giant planet (CGP) hosts (55stars) and comparison stars. The spectroscopic data for this work have aresolution of R~60,000, a signal-to-noise ratio >150, and spectralcoverage from 475 to 685 nm. We have redetermined parameters and derivedadditional abundances (Z>10) for the CGP host and comparison samples.From our abundances for elements with Z>6 we determine the meanabundance of all elements in the CGP hosts to range from 0.1 to 0.2 dexhigher than nonhosts. However, when relative abundances ([x/Fe]) areconsidered we detect no differences in the samples. We find nodifference in the lithium contents of the hosts versus the nonhosts. Theplanet hosts appear to be the metal-rich extension of local regionabundances, and overall trends in the abundances are dominated byGalactic chemical evolution. A consideration of the kinematics of thesample shows that the planet hosts are spread through velocity space;they are not exclusively stars of the thin disk.

Prospects for population synthesis in the H band: NeMo grids of stellar atmospheres compared to observations
Context: .For applications in population synthesis, libraries oftheoretical stellar spectra are often considered an alternative totemplate libraries of observed spectra, because they allow a completesampling of stellar parameters. Most of the attention in publishedtheoretical spectral libraries has been devoted to the visual wavelengthrange.Aims.The goal of the present work is to explore the near-infraredrange where few observed fully calibrated spectra and no theoreticallibraries are available.Methods.We make a detailed comparison oftheoretical spectra in the range 1.57-1.67 μm for spectral types fromA to early M and for giant and dwarf stars, with observed stellarspectra at resolutions around 3000, which would be sufficient todisentangle the different groups of late-type stars. We selected theNeMo grids of stellar atmospheres to perform this comparison.Results.Wefirst demonstrate that observed spectral flux distributions can bematched very well with theoretical ones for almost the entire parameterrange covered by the NeMo grids at moderate resolution in the visualrange. In the infrared range, although the overall shape of the observedflux distributions still matches reasonably well, the individualspectral features are reproduced by the theoretical spectra only forstars earlier than mid F type. For later spectral types the differencesincrease, and theoretical spectra of K type stars have systematicallyweaker line features than those found in observations. Thesediscrepancies are traced back to stem primarily from incomplete data onneutral atomic lines, although some of them are also related tomolecules.Conclusions.Libraries of theoretical spectra for A to early Mtype stars can be successfully used in the visual regions for populationsynthesis, but their application in the infrared is restricted to earlyand intermediate type stars. Improving atomic data in the near infraredis a key element in making the construction of reliable libraries ofstellar spectra feasible in the infrared.

Shapes of Spectral Line Bisectors for Cool Stars
The shape of the line bisector for the prototype spectral line Fe Iλ6253 was measured for an array of 54 stars on the cool half ofthe HR diagram. These bisectors are given in tables along with theirerrors. The classic C shape is shown by only a rather restricted rangein effective temperature and luminosity. The detailed change in bisectorshape with effective temperature and luminosity is documented moreprecisely than in previous work. The most blueward point on the bisectorchanges its height systematically with luminosity and can be used as aluminosity or gravity discriminant. The wide range of bisector shapescontains significant information about the velocity fields in theatmospheres of these stars, but extracting that information may requireextensive modeling.

An Improved Infrared Passband System for Ground-based Photometry: Realization
We describe new simulations and field trials of the new infraredpassband system developed and discussed by Young, Milone, & Stagg,who discussed and illustrated the state of infrared photometry andsuggested ways in which it could be improved. In particular, theypresented a new set of passbands that minimize the dependence of thephotometry on the water vapor bands of the atmospheric windows, whichdefined the edges of many previous infrared passbands, especially whenused at sites and under conditions for which they were not designed. Inthis paper, we present numerical simulations for three atmosphericmodels, demonstrate a measure of the signal-to-noise ratio in the newpassbands for these models, and present observational data obtained at arelatively low-elevation site. The latter demonstrate the utility ofthis system for most astronomical sites where photometry can beperformed, and permit the transformation of observations to this system.Publications of the Rothney Astrophysical Observatory, No. 74.

Lithium Abundances of F-, G-, and K-Type Stars: Profile-Fitting Analysis of the Li I 6708 Doublet
An extensive profile-fitting analysis was performed for the Li(+Fe)6707-6708Å feature of nearby 160 F-K dwarfs/subgiants (including27 planet-host stars) in the Galactic disk ( 7000 K ≳Teff ≳ 5000 K, -1 ≲ [Fe/H] ≲ +0.4), in orderto establish the photospheric lithium abundances of these stars. Thenon-LTE effect (though quantitatively insignificant) was taken intoaccount based on our statistical equilibrium calculations, which werecarried out on an adequate grid of models. Our results confirmed most ofthe interesting observational characteristics revealed by recentlypublished studies, such as the bimodal distribution of the Li abundancesfor stars at Teff ≳ 6000 K, the satisfactory agreementof the upper envelope of the A(Li) vs. [Fe/H] distribution with thetheoretical models, the existence of a positive correlation betweenA(Li) and the stellar mass, and the tendency of lower lithium abundancesof planet-host stars (as compared to stars without planets) at thenarrow ``transition'' region of 5900 K ≳ Teff ≳5800 K. The solar Li abundance derived from this analysis is 0.92 (H =12.00), which is by 0.24dex lower than the widely referenced standardvalue of 1.16.

Spectroscopic Study on the Atmospheric Parameters of Nearby F--K Dwarfs and Subgiants
Based on a collection of high-dispersion spectra obtained at OkayamaAstrophysical Observatory, the atmospheric parameters (Teff,log g, vt, and [Fe/H]) of 160 mid-F through early-K starswere extensively determined by the spectroscopic method using theequivalent widths of Fe I and Fe II lines along with the numericaltechnique of Takeda et al. (2002, PASJ, 54, 451). The results arecomprehensively discussed and compared with the parameter values derivedby different approaches (e.g., photometric colors, theoreticalevolutionary tracks, Hipparcos parallaxes, etc.) as well as with thepublished values found in various literature. It has been confirmed thatour purely spectroscopic approach yields fairly reliable and consistentresults.

Predicting accurate stellar angular diameters by the near-infrared surface brightness technique
I report on the capabilities of the near-infrared (near-IR) surfacebrightness technique to predict reliable stellar angular diameters asaccurate as <~2 per cent using standard broad-band Johnson photometryin the colour range -0.1 <= (V-K)O<= 3.7 includingstars of A, F, G, K spectral type. This empirical approach is fast toapply and leads to estimated photometric diameters in very goodagreement with recent high-precision interferometric diametermeasurements available for non-variable dwarfs and giants, as well asfor Cepheid variables. Then I compare semi-empirical diameters predictedby model-dependent photometric and spectrophotometric (SP) methods withnear-IR surface brightness diameters adopted as empirical referencecalibrators. The overall agreement between all these methods is withinapproximately +/-5 per cent, confirming previous works. However, on thesame scale of accuracy, there is also evidence for systematic shiftspresumably as a result of an incorrect representation of the stellareffective temperature in the model-dependent results. I also comparemeasurements of spectroscopic radii with near-IR surface brightnessradii of Cepheids with known distances. Spectroscopic radii are found tobe affected by a scatter as significant as >~9 per cent, which is atleast three times greater than the formal error currently claimed by thespectroscopic technique. In contrast, pulsation radii predicted by theperiod-radius (PR) relation according to the Cepheid period result aresignificantly less dispersed, indicating a quite small scatter as aresult of the finite width of the Cepheid instability strip, as expectedfrom pulsation theory. The resulting low level of noise stronglyconfirms our previous claims that the pulsation parallaxes are the mostaccurate empirical distances presently available for Galactic andextragalactic Cepheids.

Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs
We present a uniform catalog of stellar properties for 1040 nearby F, G,and K stars that have been observed by the Keck, Lick, and AAT planetsearch programs. Fitting observed echelle spectra with synthetic spectrayielded effective temperature, surface gravity, metallicity, projectedrotational velocity, and abundances of the elements Na, Si, Ti, Fe, andNi, for every star in the catalog. Combining V-band photometry andHipparcos parallaxes with a bolometric correction based on thespectroscopic results yielded stellar luminosity, radius, and mass.Interpolating Yonsei-Yale isochrones to the luminosity, effectivetemperature, metallicity, and α-element enhancement of each staryielded a theoretical mass, radius, gravity, and age range for moststars in the catalog. Automated tools provide uniform results and makeanalysis of such a large sample practical. Our analysis method differsfrom traditional abundance analyses in that we fit the observed spectrumdirectly, rather than trying to match equivalent widths, and wedetermine effective temperature and surface gravity from the spectrumitself, rather than adopting values based on measured photometry orparallax. As part of our analysis, we determined a new relationshipbetween macroturbulence and effective temperature on the main sequence.Detailed error analysis revealed small systematic offsets with respectto the Sun and spurious abundance trends as a function of effectivetemperature that would be inobvious in smaller samples. We attempted toremove these errors by applying empirical corrections, achieving aprecision per spectrum of 44 K in effective temperature, 0.03 dex inmetallicity, 0.06 dex in the logarithm of gravity, and 0.5 kms-1 in projected rotational velocity. Comparisons withprevious studies show only small discrepancies. Our spectroscopicallydetermined masses have a median fractional precision of 15%, but theyare systematically 10% higher than masses obtained by interpolatingisochrones. Our spectroscopic radii have a median fractional precisionof 3%. Our ages from isochrones have a precision that variesdramatically with location in the Hertzsprung-Russell diagram. We planto extend the catalog by applying our automated analysis technique toother large stellar samples.

Can Life Develop in the Expanded Habitable Zones around Red Giant Stars?
We present some new ideas about the possibility of life developingaround subgiant and red giant stars. Our study concerns the temporalevolution of the habitable zone. The distance between the star and thehabitable zone, as well as its width, increases with time as aconsequence of stellar evolution. The habitable zone moves outward afterthe star leaves the main sequence, sweeping a wider range of distancesfrom the star until the star reaches the tip of the asymptotic giantbranch. Currently there is no clear evidence as to when life actuallyformed on the Earth, but recent isotopic data suggest life existed atleast as early as 7×108 yr after the Earth was formed.Thus, if life could form and evolve over time intervals from5×108 to 109 yr, then there could behabitable planets with life around red giant stars. For a 1Msolar star at the first stages of its post-main-sequenceevolution, the temporal transit of the habitable zone is estimated to beseveral times 109 yr at 2 AU and around 108 yr at9 AU. Under these circumstances life could develop at distances in therange 2-9 AU in the environment of subgiant or giant stars, and in thefar distant future in the environment of our own solar system. After astar completes its first ascent along the red giant branch and the Heflash takes place, there is an additional stable period of quiescent Hecore burning during which there is another opportunity for life todevelop. For a 1 Msolar star there is an additional109 yr with a stable habitable zone in the region from 7 to22 AU. Space astronomy missions, such as proposed for the TerrestrialPlanet Finder (TPF) and Darwin, that focus on searches for signatures oflife on extrasolar planets, should also consider the environments ofsubgiants and red giant stars as potentially interesting sites forunderstanding the development of life. We performed a preliminaryevaluation of the difficulty of interferometric observations of planetsaround red giant stars compared to a main-sequence star environment. Weshow that pathfinder missions for TPF and Darwin, such as Eclipse andFKSI, have sufficient angular resolution and sensitivity to search forhabitable planets around some of the closest evolved stars of thesubgiant and red giant class.

UVBLUE: A New High-Resolution Theoretical Library of Ultraviolet Stellar Spectra
We present an extended ultraviolet-blue (850-4700 Å) library oftheoretical stellar spectral energy distributions computed at highresolution, λ/Δλ=50,000. The UVBLUE grid, as wenamed the library, is based on LTE calculations carried out with ATLAS9and SYNTHE codes developed by R. L. Kurucz and consists of nearly 1800entries that cover a large volume of the parameter space. It spans arange in Teff from 3000 to 50,000 K, the surface gravityranges from logg=0.0 to 5.0 with Δlogg=0.5 dex, while sevenchemical compositions are considered:[M/H]=-2.0,-1.5,-1.0,-0.5,+0.0,+0.3, and +0.5 dex. For its coverageacross the Hertzsprung-Russell diagram, this library is the mostcomprehensive one ever computed at high resolution in theshort-wavelength spectral range, and useful application can be foreseenfor both the study of single stars and in population synthesis models ofgalaxies and other stellar systems. We briefly discuss some relevantissues for a safe application of the theoretical output to ultravioletobservations, and a comparison of our LTE models with the non-LTE (NLTE)ones from the TLUSTY code is also carried out. NLTE spectra are found,on average, to be slightly ``redder'' compared to the LTE ones for thesame value of Teff, while a larger difference could bedetected for weak lines, which are nearly wiped out by the enhanced coreemission component in case of NLTE atmospheres. These effects seem to bemagnified at low metallicity (typically [M/H]<~-1). A match with aworking sample of 111 stars from the IUE atlas, with availableatmosphere parameters from the literature, shows that UVBLUE modelsprovide an accurate description of the main mid- and low-resolutionspectral features for stars along the whole sequence from the B to ~G5type. The comparison sensibly degrades for later spectral types, withsupergiant stars that are in general more poorly reproduced than dwarfs.As a possible explanation of this overall trend, we partly invoke theuncertainty in the input atmosphere parameters to compute thetheoretical spectra. In addition, one should also consider the importantcontamination of the IUE stellar sample, where the presence of binaryand variable stars certainly works in the sense of artificiallyworsening the match between theory and observations.

The Planet-Metallicity Correlation
We have recently carried out spectral synthesis modeling to determineTeff, logg, vsini, and [Fe/H] for 1040 FGK-type stars on theKeck, Lick, and Anglo-Australian Telescope planet search programs. Thisis the first time that a single, uniform spectroscopic analysis has beenmade for every star on a large Doppler planet search survey. We identifya subset of 850 stars that have Doppler observations sufficient todetect uniformly all planets with radial velocity semiamplitudes K>30m s-1 and orbital periods shorter than 4 yr. From this subsetof stars, we determine that fewer than 3% of stars with-0.5<[Fe/H]<0.0 have Doppler-detected planets. Above solarmetallicity, there is a smooth and rapid rise in the fraction of starswith planets. At [Fe/H]>+0.3 dex, 25% of observed stars have detectedgas giant planets. A power-law fit to these data relates the formationprobability for gas giant planets to the square of the number of metalatoms. High stellar metallicity also appears to be correlated with thepresence of multiple-planet systems and with the total detected planetmass. This data set was examined to better understand the origin of highmetallicity in stars with planets. None of the expected fossilsignatures of accretion are observed in stars with planets relative tothe general sample: (1) metallicity does not appear to increase as themass of the convective envelopes decreases, (2) subgiants with planetsdo not show dilution of metallicity, (3) no abundance variations for Na,Si, Ti, or Ni are found as a function of condensation temperature, and(4) no correlations between metallicity and orbital period oreccentricity could be identified. We conclude that stars with extrasolarplanets do not have an accretion signature that distinguishes them fromother stars; more likely, they are simply born in higher metallicitymolecular clouds.Based on observations obtained at Lick and Keck Observatories, operatedby the University of California, and the Anglo-Australian Observatories.

The Cornell High-Order Adaptive Optics Survey for Brown Dwarfs in Stellar Systems. I. Observations, Data Reduction, and Detection Analyses
In this first of a two-paper sequence, we report techniques and resultsof the Cornell High-Order Adaptive Optics Survey (CHAOS) for brown dwarfcompanions. At the time of this writing, this study represents the mostsensitive published population survey of brown dwarf companions tomain-sequence stars for separations akin to our own outer solar system.The survey, conducted using the Palomar 200 inch (5 m) Hale Telescope,consists of Ks coronagraphic observations of 80 main-sequencestars out to 22 pc. At 1" separation from a typical target system, thesurvey achieves median sensitivities 10 mag fainter than the parentstar. In terms of companion mass, the survey achieves typicalsensitivities of 25MJ (1 Gyr), 50MJ (solar age),and 60MJ (10 Gyr), using the evolutionary models of Baraffeand coworkers. Using common proper motion to distinguish companions fromfield stars, we find that no systems show positive evidence of asubstellar companion (searchable separation ~1"-15" projected separation~10-155 AU at the median target distance). In the second paper of theseries we will present our Monte Carlo population simulations.

Statistical Constraints for Astrometric Binaries with Nonlinear Motion
Useful constraints on the orbits and mass ratios of astrometric binariesin the Hipparcos catalog are derived from the measured proper motiondifferences of Hipparcos and Tycho-2 (Δμ), accelerations ofproper motions (μ˙), and second derivatives of proper motions(μ̈). It is shown how, in some cases, statistical bounds can beestimated for the masses of the secondary components. Two catalogs ofastrometric binaries are generated, one of binaries with significantproper motion differences and the other of binaries with significantaccelerations of their proper motions. Mathematical relations betweenthe astrometric observables Δμ, μ˙, and μ̈ andthe orbital elements are derived in the appendices. We find a remarkabledifference between the distribution of spectral types of stars withlarge accelerations but small proper motion differences and that ofstars with large proper motion differences but insignificantaccelerations. The spectral type distribution for the former sample ofbinaries is the same as the general distribution of all stars in theHipparcos catalog, whereas the latter sample is clearly dominated bysolar-type stars, with an obvious dearth of blue stars. We point outthat the latter set includes mostly binaries with long periods (longerthan about 6 yr).

Stars within 15 Parsecs: Abundances for a Northern Sample
We present an abundance analysis for stars within 15 pc of the Sunlocated north of -30° declination. We have limited our abundancesample to absolute magnitudes brighter than +7.5 and have eliminatedseveral A stars in the local vicinity. Our final analysis list numbers114 stars. Unlike Allende Prieto et al. in their consideration of a verysimilar sample, we have enforced strict spectroscopic criteria in thedetermination of atmospheric parameters. Nevertheless, our results arevery similar to theirs. We determine the mean metallicity of the localregion to be <[Fe/H]>=-0.07 using all stars and -0.04 when interlopersfrom the thick disk are eliminated.

Metallicity of M dwarfs. I. A photometric calibration and the impact on the mass-luminosity relation at the bottom of the main sequence
We obtained high resolution ELODIE and CORALIE spectra for bothcomponents of 20 wide visual binaries composed of an F-, G- or K-dwarfprimary and an M-dwarf secondary. We analyse the well-understood spectraof the primaries to determine metallicities ([Fe/H]) for these 20systems, and hence for their M dwarf components. We pool thesemetallicities with determinations from the literature to obtain aprecise (±0.2 dex) photometric calibration of M dwarfmetallicities. This calibration represents a breakthrough in a fieldwhere discussions have had to remain largely qualitative, and it helpsus demonstrate that metallicity explains most of the large dispersion inthe empirical V-band mass-luminosity relation. We examine themetallicity of the two known M-dwarf planet-host stars, Gl876 (+0.02 dex) and Gl 436 (-0.03 dex), inthe context of preferential planet formation around metal-rich stars. Wefinally determine the metallicity of the 47 brightest single M dwarfs ina volume-limited sample, and compare the metallicity distributions ofsolar-type and M-dwarf stars in the solar neighbourhood.

Abundance trends in kinematical groups of the Milky Way's disk
We have compiled a large catalogue of metallicities and abundance ratiosfrom the literature in order to investigate abundance trends of severalalpha and iron peak elements in the thin disk and the thick disk of theGalaxy. The catalogue includes 743 stars with abundances of Fe, O, Mg,Ca, Ti, Si, Na, Ni and Al in the metallicity range -1.30 < [Fe/H]< +0.50. We have checked that systematic differences betweenabundances measured in the different studies were lower than randomerrors before combining them. Accurate distances and proper motions fromHipparcos and radial velocities from several sources have been retreivedfor 639 stars and their velocities (U, V, W) and galactic orbits havebeen computed. Ages of 322 stars have been estimated with a Bayesianmethod of isochrone fitting. Two samples kinematically representative ofthe thin and thick disks have been selected, taking into account theHercules stream which is intermediate in kinematics, but with a probabledynamical origin. Our results show that the two disks are chemicallywell separated, they overlap greatly in metallicity and both showparallel decreasing alpha elements with increasing metallicity, in theinterval -0.80 < [Fe/H] < -0.30. The Mg enhancement with respectto Fe of the thick disk is measured to be 0.14 dex. An even largerenhancement is observed for Al. The thick disk is clearly older than thethin disk with tentative evidence of an AMR over 2-3 Gyr and a hiatus instar formation before the formation of the thin disk. We do not observea vertical gradient in the metallicity of the thick disk. The Herculesstream has properties similar to that of the thin disk, with a widerrange of metallicity. Metal-rich stars assigned to the thick disk andsuper-metal-rich stars assigned to the thin disk appear as outliers inall their properties.

Identification of a complete sample of northern ROSAT All-Sky Survey X-ray sources. VIII. The late-type stellar component
We present results of an investigation of the X-ray properties, agedistribution, and kinematical characteristics of a high-galacticlatitude sample of late-type field stars selected from the ROSAT All-SkySurvey (RASS). The sample comprises 254 RASS sources with opticalcounterparts of spectral types F to M distributed over six study areaslocated at |b|  20 °, and Dec ≥ -9 °. A detailed studywas carried out for the subsample of ~200 G, K, and M stars. Lithiumabundances were determined for 179 G-M stars. Radial velocities weremeasured for most of the 141 G and K type stars of the sample. Combinedwith proper motions these data were used to study the age distributionand the kinematical properties of the sample. Based on the lithiumabundances half of the G-K stars were found to be younger than theHyades (660 Myr). About 25% are comparable in age to the Pleiades (100Myr). A small subsample of 10 stars is younger than the Pleiades. Theyare therefore most likely pre-main sequence stars. Kinematically the PMSand Pleiades-type stars appear to form a group with space velocitiesclose to the Castor moving group but clearly distinct from the LocalAssociation.Based on observations collected at the German-Spanish AstronomicalCentre, Calar Alto, operated by the Max-Planck-Institut fürAstronomie, Heidelberg, jointly with the Spanish National Commission forAstronomy, and at the European Southern Observatory, La Silla, Chile.Tables A2-A4 are only available in electronic form athttp://www.edpsciences.org

CHARM2: An updated Catalog of High Angular Resolution Measurements
We present an update of the Catalog of High Angular ResolutionMeasurements (CHARM, Richichi & Percheron \cite{CHARM}, A&A,386, 492), which includes results available until July 2004. CHARM2 is acompilation of direct measurements by high angular resolution methods,as well as indirect estimates of stellar diameters. Its main goal is toprovide a reference list of sources which can be used for calibrationand verification observations with long-baseline optical and near-IRinterferometers. Single and binary stars are included, as are complexobjects from circumstellar shells to extragalactic sources. The presentupdate provides an increase of almost a factor of two over the previousedition. Additionally, it includes several corrections and improvements,as well as a cross-check with the valuable public release observationsof the ESO Very Large Telescope Interferometer (VLTI). A total of 8231entries for 3238 unique sources are now present in CHARM2. Thisrepresents an increase of a factor of 3.4 and 2.0, respectively, overthe contents of the previous version of CHARM.The catalog is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/431/773

The Impact of Space Experiments on our Knowledge of the Physics of the Universe
With the advent of space experiments it was demonstrated that cosmicsources emit energy practically across all the electromagnetic spectrumvia different physical processes. Several physical quantities givewitness to these processes which usually are not stationary; thosephysical observable quantities are then generally variable. Thereforesimultaneous multifrequency observations are strictly necessary in orderto understand the actual behaviour of cosmic sources. Space experimentshave opened practically all the electromagnetic windows on the Universe.A discussion of the most important results coming from multifrequencyphotonic astrophysics experiments will provide new inputs for theadvance of the knowledge of the physics, very often in its more extremeconditions. A multitude of high quality data across practically thewhole electromagnetic spectrum came at the scientific community'sdisposal a few years after the beginning of the Space Era. With thesedata we are attempting to explain the physics governing the Universeand, moreover, its origin, which has been and still is a matter of thegreatest curiosity for humanity. In this paper we will try to describethe last steps of the investigation born with the advent of spaceexperiments, to note upon the most important results and open problemsstill existing, and to comment upon the perspectives we can reasonablyexpect. Once the idea of this paper was well accepted by ourselves, wehad the problem of how to plan the exposition. Indeed, the exposition ofthe results can be made in different ways, following several points ofview, according to: - a division in diffuse and discrete sources; -different classes of cosmic sources; - different spectral ranges, whichimplies in turn a sub-classification in accordance with differenttechniques of observations; - different physical emission mechanisms ofelectromagnetic radiation; - different vehicles used for launching theexperiments (aircraft, balloons, rockets, satellites, observatories). Inorder to exhaustively present The Impact of Space Experiments on ourKnowledge of the Physics of the Universe it would then have beennecessary to write a kind of Encyclopaedia of the Astronomical SpaceResearch, which is not our desire. On the contrary, since our goal is toprovide an useful tool for the reader who has not specialized in spaceastrophysics and for the students, we decided to write this paper in theform of a review, the length of which can be still consideredreasonable, taking into account the complexity of the argumentsdiscussed. Because of the impossibility of realizing a complete pictureof the physics governing the Universe, we were obliged to select how toproceed, the subjects to be discussed the more or the less, or those tobe rejected. Because this work was born in the Ph.D. thesis of one of us(LSG) (Sabau-Graziati, 1990) we decided to follow the `astronomicaltradition' used there, namely: the spectral energy ranges. Although suchenergy ranges do not determine physical objects (even if in many casessuch ranges are used to define the sources as: radio, infrared, optical,ultraviolet, X-ray, γ-ray emitters), they do determine themethods of study, and from the technical point of view they define thetechnology employed in the relative experiments. However, since then wehave decided to avoid a deep description of the experiments, satellites,and observatories, simply to grant a preference to the physical results,rather than to technologies, however fundamental for obtaining thoseresults. The exposition, after an introduction (Section 1) and somecrucial results from space astronomy (Section 2), has been focussed intothree parts: the physics of the diffuse cosmic sources deduced fromspace experiments (Section 3), the physics of cosmic rays from ground-and space-based experiments (Section 4), and the physics of discretecosmic sources deduced from space experiments (Section 5). In this firstpart of the paper we have used the logic of describing the main resultsobtained in different energy ranges, which in turn characterize theexperiments on board space vehicles. Within each energy range we havediscussed the contributions to the knowledge of various kind of cosmicsources coming from different experiments. And this part is mainlyderived by the bulk of the introductory part of LSG's Ph.D. thesis. Inthe second part of the paper, starting from Section 6, we have preferredto discuss several classes of cosmic sources independently of the energyranges, mainly focussing the results from a multifrequency point ofview, making a preference for the knowledge of the physics governing thewhole class. This was decided also because of the multitude of new spaceexperiments launched in the last fifteen years, which would haverendered almost impossible a discussion of the results divided intoenergy ranges without weakening the construction of the entire puzzle.We do not pretend to cover every aspect of every subject consideredunder the heading of the physics of the universe. Instead a crosssection of essays on historical, modern, and philosophical topics areoffered and combined with personal views into tricks of the spaceastrophysics trade. The reader is, then, invited to accept this papereven though it obviously lacks completeness and the arguments discussedare certainly biased by a selection effect owed essentially to ourknowledge, and to it being of a reasonable length. Some parts of itcould seem, in certain sense, to belong to an older paper, in which the`news' is not reported. But this is owed to our own choice, just in fullaccord with the goals of the text: we want to present those resultswhich have, in our opinion, been really important, in the development ofthe science. These impacting results do not necessarily constitute thelast news. This text was formally closed just on the day of the launchof the INTEGRAL satellite: October 17, 2002. After that date onlyfinishing touches have been added.

Improved Baade-Wesselink surface brightness relations
Recent, and older accurate, data on (limb-darkened) angular diameters iscompiled for 221 stars, as well as BVRIJK[12][25] magnitudes for thoseobjects, when available. Nine stars (all M-giants or supergiants)showing excess in the [12-25] colour are excluded from the analysis asthis may indicate the presence of dust influencing the optical andnear-infrared colours as well. Based on this large sample,Baade-Wesselink surface brightness (SB) relations are presented fordwarfs, giants, supergiants and dwarfs in the optical and near-infrared.M-giants are found to follow different SB relations from non-M-giants,in particular in V versus V-R. The preferred relation for non-M-giantsis compared to the earlier relation by Fouqué and Gieren (basedon 10 stars) and Nordgren et al. (based on 57 stars). Increasing thesample size does not lead to a lower rms value. It is shown that theresiduals do not correlate with metallicity at a significant level. Thefinally adopted observed angular diameters are compared to thosepredicted by Cohen et al. for 45 stars in common, and there isreasonable overall, and good agreement when θ < 6 mas.Finally, I comment on the common practice in the literature to average,and then fix, the zero-point of the V versus V-K, V versus V-R and Kversus J-K relations, and then rederive the slopes. Such a commonzero-point at zero colour is not expected from model atmospheres for theV-R colour and depends on gravity. Relations derived in this way may bebiased.

Determination of fundamental characteristics for stars of the F, G, and K spectral types. The surface gravities and metallicity parameters.
Not Available

Chromospheric Ca II Emission in Nearby F, G, K, and M Stars
We present chromospheric Ca II H and K activity measurements, rotationperiods, and ages for ~1200 F, G, K, and M type main-sequence stars from~18,000 archival spectra taken at Keck and Lick Observatories as a partof the California and Carnegie Planet Search Project. We have calibratedour chromospheric S-values against the Mount Wilson chromosphericactivity data. From these measurements we have calculated medianactivity levels and derived R'HK, stellar ages,and rotation periods from general parameterizations for 1228 stars,~1000 of which have no previously published S-values. We also presentprecise time series of activity measurements for these stars.Based on observations obtained at Lick Observatory, which is operated bythe University of California, and on observations obtained at the W. M.Keck Observatory, which is operated jointly by the University ofCalifornia and the California Institute of Technology. The KeckObservatory was made possible by the generous financial support of theW. M. Keck Foundation.

The Indo-US Library of Coudé Feed Stellar Spectra
We have obtained spectra for 1273 stars using the 0.9 m coudéfeed telescope at Kitt Peak National Observatory. This telescope feedsthe coudé spectrograph of the 2.1 m telescope. The spectra havebeen obtained with the no. 5 camera of the coudé spectrograph anda Loral 3K×1K CCD. Two gratings have been used to provide spectralcoverage from 3460 to 9464 Å, at a resolution of ~1 Å FWHMand at an original dispersion of 0.44 Å pixel-1. For885 stars we have complete spectra over the entire 3460 to 9464 Åwavelength region (neglecting small gaps of less than 50 Å), andpartial spectral coverage for the remaining stars. The 1273 stars havebeen selected to provide broad coverage of the atmospheric parametersTeff, logg, and [Fe/H], as well as spectral type. The goal ofthe project is to provide a comprehensive library of stellar spectra foruse in the automated classification of stellar and galaxy spectra and ingalaxy population synthesis. In this paper we discuss thecharacteristics of the spectral library, viz., details of theobservations, data reduction procedures, and selection of stars. We alsopresent a few illustrations of the quality and information available inthe spectra. The first version of the complete spectral library is nowpublicly available from the National Optical Astronomy Observatory(NOAO) via ftp and http.

Synthetic Lick Indices and Detection of α-enhanced Stars. II. F, G, and K Stars in the -1.0 < [Fe/H] < +0.50 Range
We present an analysis of 402 F, G, and K solar neighborhood stars, withaccurate estimates of [Fe/H] in the range -1.0 to +0.5 dex, aimed at thedetection of α-enhanced stars and at the investigation of theirkinematical properties. The analysis is based on the comparison of 571sets of spectral indices in the Lick/IDS system, coming from fourdifferent observational data sets, with synthetic indices computed withsolar-scaled abundances and with α-element enhancement. We useselected combinations of indices to single out α-enhanced starswithout requiring previous knowledge of their main atmosphericparameters. By applying this approach to the total data set, we obtain alist of 60 bona fide α-enhanced stars and of 146 stars withsolar-scaled abundances. The properties of the detected α-enhancedand solar-scaled abundance stars with respect to their [Fe/H] values andkinematics are presented. A clear kinematic distinction betweensolar-scaled and α-enhanced stars was found, although a one-to-onecorrespondence to ``thin disk'' and ``thick disk'' components cannot besupported with the present data.

Empirically Constrained Color-Temperature Relations. II. uvby
A new grid of theoretical color indices for the Strömgren uvbyphotometric system has been derived from MARCS model atmospheres and SSGsynthetic spectra for cool dwarf and giant stars having-3.0<=[Fe/H]<=+0.5 and 3000<=Teff<=8000 K. Atwarmer temperatures (i.e., 8000-2.0. To overcome thisproblem, the theoretical indices at intermediate and high metallicitieshave been corrected using a set of color calibrations based on fieldstars having well-determined distances from Hipparcos, accurateTeff estimates from the infrared flux method, andspectroscopic [Fe/H] values. In contrast with Paper I, star clustersplayed only a minor role in this analysis in that they provided asupplementary constraint on the color corrections for cool dwarf starswith Teff<=5500 K. They were mainly used to test thecolor-Teff relations and, encouragingly, isochrones thatemploy the transformations derived in this study are able to reproducethe observed CMDs (involving u-v, v-b, and b-y colors) for a number ofopen and globular clusters (including M67, the Hyades, and 47 Tuc)rather well. Moreover, our interpretations of such data are verysimilar, if not identical, with those given in Paper I from aconsideration of BV(RI)C observations for the sameclusters-which provides a compelling argument in support of thecolor-Teff relations that are reported in both studies. Inthe present investigation, we have also analyzed the observedStrömgren photometry for the classic Population II subdwarfs,compared our ``final'' (b-y)-Teff relationship with thosederived empirically in a number of recent studies and examined in somedetail the dependence of the m1 index on [Fe/H].Based, in part, on observations made with the Nordic Optical Telescope,operated jointly on the island of La Palma by Denmark, Finland, Iceland,Norway, and Sweden, in the Spanish Observatorio del Roque de losMuchachos of the Instituto de Astrofisica de Canarias.Based, in part, on observations obtained with the Danish 1.54 mtelescope at the European Southern Observatory, La Silla, Chile.

The angular sizes of dwarf stars and subgiants. Surface brightness relations calibrated by interferometry
The availability of a number of new interferometric measurements of MainSequence and subgiant stars makes it possible to calibrate the surfacebrightness relations of these stars using exclusively direct angulardiameter measurements. These empirical laws make it possible to predictthe limb darkened angular diameters θLD of dwarfs andsubgiants using their dereddened Johnson magnitudes, or their effectivetemperature. The smallest intrinsic dispersions of σ ≤1% inθLD are obtained for the relations based on the K andL magnitudes, for instance log θLD = 0.0502 (B-L) +0.5133 - 0.2 L or log θLD = 0.0755 (V-K) + 0.5170 -0.2 K. Our calibrations are valid between the spectral types A0 and M2for dwarf stars (with a possible extension to later types when using theeffective temperature), and between A0 and K0 for subgiants. Suchrelations are particularly useful for estimating the angular sizes ofcalibrators for long-baseline interferometry from readily availablebroadband photometry.Tables 3-6 are only available in electronic form athttp://www.edpsciences.org

Sodium abundances in nearby disk stars
We present sodium abundances for a sample of nearby stars. All resultshave been derived from NLTE statistical equilibrium calculations. Theinfluence of collisional interactions with electrons and hydrogen atomsis evaluated by comparison of the solar spectrum with very precise fitsto the Na I line cores. The NLTE effects are more pronounced inmetal-poor stars since the statistical equilibrium is dominated bycollisions of which at least the electronic component is substantiallyreduced. The resulting influence on the determination of sodiumabundances is in a direction opposite to that found previously for Mgand Al. The NLTE corrections are about -0.1 in thick-disk stars with[Fe/H] ˜-0.6. Our [Na/Fe] abundance ratios are about solar forthick- and thin-disk stars. The increase in [Na/Fe] as a function of[Fe/H] for metal-rich stars found by Edvardsson et al. (\cite{EAG93}) isconfirmed. Our results suggest that sodium yields increase with themetallicity, and quite large amounts of sodium may be produced by AGBstars. We find that [Na/Fe] ratios, together with either [Mg/Fe] ratio,kinematic data or stellar evolutionary ages, make possible theindividual discrimination between thin- and thick-disk membership.Based on observations collected at the Germany-Spanish AstronomicalCenter, Calar Alto, Spain.Tables \ref{table2} and \ref{table3} are only available in electronicform at http://www.edpsciences.org

S4N: A spectroscopic survey of stars in the solar neighborhood. The Nearest 15 pc
We report the results of a high-resolution spectroscopic survey of allthe stars more luminous than M_V = 6.5 mag within 14.5 pc from the Sun.The Hipparcos catalog's completeness limits guarantee that our survey iscomprehensive and free from some of the selection effects in othersamples of nearby stars. The resulting spectroscopic database, which wehave made publicly available, includes spectra for 118 stars obtainedwith a resolving power of R ≃ 50 000, continuous spectral coveragebetween ˜ 362-921 nm, and typical signal-to-noise ratios in therange 150-600. We derive stellar parameters and perform a preliminaryabundance and kinematic analysis of the F-G-K stars in the sample. Theinferred metallicity ([Fe/H]) distribution is centered at about -0.1dex, and shows a standard deviation of 0.2 dex. A comparison with largersamples of Hipparcos stars, some of which have been part of previousabundance studies, suggests that our limited sample is representative ofa larger volume of the local thin disk. We identify a number ofmetal-rich K-type stars which appear to be very old, confirming theclaims for the existence of such stars in the solar neighborhood. Withatmospheric effective temperatures and gravities derived independentlyof the spectra, we find that our classical LTE model-atmosphere analysisof metal-rich (and mainly K-type) stars provides discrepant abundancesfrom neutral and ionized lines of several metals. This ionizationimbalance could be a sign of departures from LTE or inhomogeneousstructure, which are ignored in the interpretation of the spectra.Alternatively, but seemingly unlikely, the mismatch could be explainedby systematic errors in the scale of effective temperatures. Based ontransitions of majority species, we discuss abundances of 16 chemicalelements. In agreement with earlier studies we find that the abundanceratios to iron of Si, Sc, Ti, Co, and Zn become smaller as the ironabundance increases until approaching the solar values, but the trendsreverse for higher iron abundances. At any given metallicity, stars witha low galactic rotational velocity tend to have high abundances of Mg,Si, Ca, Sc, Ti, Co, Zn, and Eu, but low abundances of Ba, Ce, and Nd.The Sun appears deficient by roughly 0.1 dex in O, Si, Ca, Sc, Ti, Y,Ce, Nd, and Eu, compared to its immediate neighbors with similar ironabundances.Based on observations made with the 2.7 m telescope at the McDonaldObservatory of the University of Texas at Austin (Texas), and the 1.52 mtelescope at the European Southern Observatory (La Silla, Chile) underthe agreement with the CNPq/Observatorio Nacional (Brazil).Tables 3-5 are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/420/183

NEXXUS: A comprehensive ROSAT survey of coronal X-ray emission among nearby solar-like stars
We present a final summary of all ROSAT X-ray observations of nearbystars. All available ROSAT observations with the ROSAT PSPC, HRI and WFChave been matched with the CNS4 catalog of nearby stars and the resultsgathered in the Nearby X-ray and XUV-emitting Stars data base, availablevia www from the Home Page of the Hamburger Sternwarte at the URLhttp://www.hs.uni-hamburg.de/DE/For/Gal/Xgroup/nexxus. Newvolume-limited samples of F/G-stars (dlim = 14 pc), K-stars(dlim = 12 pc), and M-stars (dlim = 6 pc) areconstructed within which detection rates of more than 90% are obtained;only one star (GJ 1002) remains undetected in a pointed follow-upobservation. F/G-stars, K-stars and M-stars have indistinguishablesurface X-ray flux distributions, and the lower envelope of the observeddistribution at FX ≈ 104 erg/cm2/sis the X-ray flux level observed in solar coronal holes. Large amplitudevariations in X-ray flux are uncommon for solar-like stars, but maybemore common for stars near the bottom of the main sequence; a largeamplitude flare is reported for the M star LHS 288. Long term X-raylight curves are presented for α Cen A/B and Gl 86, showingvariations on time scales of weeks and demonstrating that α Cen Bis a flare star.Tables 1-3 are also available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/417/651

Yeni bir Makale Öner


Ýlgili Baðlantýlar

  • - Baðlantý Bulunamadý -
Yeni Bir Baðlantý Öner


sonraki gruplarýn üyesi:


Gözlemler ve gökölçümü verileri

Takýmyýldýz:Herkul
Sað Açýklýk:17h46m27.50s
Yükselim:+27°43'14.0"
Görünürdeki Parlaklýk:3.42
Uzaklýk:8.4 parsek
özdevim Sað Açýklýk:-310.3
özdevim Yükselim:-750.3
B-T magnitude:4.336
V-T magnitude:3.49

Kataloglar ve belirtme:
Özgün isimleriMelkarth
Bayerμ Her
Flamsteed86 Her
HD 1989HD 161797
TYCHO-2 2000TYC 2085-3062-1
USNO-A2.0USNO-A2 1125-08573144
BSC 1991HR 6623
HIPHIP 86974

→ VizieR 'den daha fazla katalog ve tanýmlama isteyin