首页     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     天文图片     收集     论坛     Blog New!     常见问题     登录  
→ Adopt this star  

HD 174383


目录

图像

上传图像

DSS Images   Other Images


相关文章

The Distribution of the Elements in the Galactic Disk
This paper reports on the spectroscopic investigation of 54 Cepheids,deriving parameters and abundances. These Cepheids extend previoussamples by about 35% in number and increase the amount of the Galacticdisk coverage, especially in the direction of l~120deg. Wefind that there exists in the Galactic disk at that longitude and at asolar distance of about 3-4 kpc a region that has enhanced abundances,~+0.2, with respect to the local region. A simple linearfit to all Cepheid data now extant yields a gradientd[Fe/H]/dRG=-0.068+/-0.003 dex kpc-1. Afterconsideration of the spatial abundance inhomogeneities in the sample, weconclude that the best current estimate of the overall gradient isd[Fe/H]/dRG=-0.06 dex kpc-1.

Period-colour and amplitude-colour relations in classical Cepheid variables - IV. The multiphase relations
The superb phase resolution and quality of the Optical GravitationalLensing Experiment (OGLE) data on the Large Magellanic Cloud (LMC) andSmall Magellanic Cloud (SMC) Cepheids, together with existing data onGalactic Cepheids, are combined to study the period-colour (PC) andamplitude-colour (AC) relations as a function of pulsation phase. Ourresults confirm earlier work that the LMC PC relation (at mean light) ismore consistent with two lines of differing slopes, separated at aperiod of 10 d. However, our multiphase PC relations reveal much newstructure which can potentially increase our understanding of Cepheidvariables. These multiphase PC relations provide insight into why theGalactic PC relation is linear but the LMC PC relation is non-linear.This is because the LMC PC relation is shallower for short (logP < 1)and steeper for long (logP > 1) period Cepheids than thecorresponding Galactic PC relation. Both of the short- and long-periodCepheids in all three galaxies exhibit the steepest and shallowestslopes at phases around 0.75-0.85, respectively. A consequence is thatthe PC relation at phase ~ 0.8 is highly non-linear. Further, theGalactic and LMC Cepheids with logP > 1 display a flat slope in thePC plane at phases close to the maximum light. When the LMCperiod-luminosity (PL) relation is studied as a function of phase, weconfirm that it changes with the PC relation. The LMC PL relation in Vand I band near the phase of 0.8 provides compelling evidence that thisrelation is also consistent with two lines of differing slopes joined ata period close to 10 d.

Beobachtungsergebnisse Bundesdeutsche Arbeitsgemeinschaft fur Veranderliche Sterne e.V.
Not Available

Infrared Surface Brightness Distances to Cepheids: A Comparison of Bayesian and Linear-Bisector Calculations
We have compared the results of Bayesian statistical calculations andlinear-bisector calculations for obtaining Cepheid distances and radiiby the infrared surface brightness method. We analyzed a set of 38Cepheids using a Bayesian Markov Chain Monte Carlo method that had beenrecently studied with a linear-bisector method. The distances obtainedby the two techniques agree to 1.5%+/-0.6%, with the Bayesian distancesbeing larger. The radii agree to 1.1%+/-0.7%, with the Bayesiandeterminations again being larger. We interpret this result asdemonstrating that the two methods yield the same distances and radii.This implies that the short distance to the Large Magellanic Cloud foundin recent linear-bisector studies of Cepheids is not caused bydeficiencies in the mathematical treatment. However, the computeduncertainties in distance and radius for our data set are larger in theBayesian calculation by factors of 1.4-6.7. We give reasons to favor theBayesian computations of the uncertainties. The larger uncertainties canhave a significant impact on interpretation of Cepheid distances andradii obtained from the infrared surface brightness method.

Mean JHK Magnitudes of Fundamental-Mode Cepheids from Single-Epoch Observations
We present an empirical method for converting single-point near-infraredJ, H, and K measurements of fundamental-mode Cepheids to meanmagnitudes, using complete light curves in V or I bands. The algorithmis based on the template light curves in the near-infrared bandpasses.The mean uncertainty of the method is estimated to about 0.03 mag, whichis smaller than the uncertainties obtained in other approaches to theproblem in the literature.

Pulsation and Evolutionary Masses of Classical Cepheids. I. Milky Way Variables
We investigate a selected sample of Galactic classical Cepheids withavailable distance and reddening estimates in the framework of thetheoretical scenario provided by pulsation models, computed with metalabundance Z=0.02, helium content in the range of Y=0.25-0.31, andvarious choices of the stellar mass and luminosity. After transformingthe bolometric light curve of the fundamental models into BVRIJKmagnitudes, we derived analytical relations connecting the pulsationperiod with the stellar mass, the mean (intensity averaged) absolutemagnitude, and the color of the pulsators. These relations are usedtogether with the Cepheid observed absolute magnitudes in order todetermine the ``pulsation'' mass, Mp, of each individualvariable. The comparison with the ``evolutionary'' masses,Me,can, given by canonical (no convective core overshooting,no mass loss) models of central He-burning stellar structures revealsthat the Mp/Me,can ratio is correlated with theCepheid period, ranging from ~0.8 at logP=0.5 to ~1 at logP=1.5. Wediscuss the effects of different input physics and/or assumptions on theevolutionary computations, as well as of uncertainties in the adoptedCepheid metal content, distance, and reddening. Eventually, we find thatthe pulsational results can be interpreted in terms of mass loss duringor before the Cepheid phase, whose amount increases as the Cepheidoriginal mass decreases. It vanishes around 13 Msolar andincreases up to ~20% at 4 Msolar.

Direct Distances to Cepheids in the Large Magellanic Cloud: Evidence for a Universal Slope of the Period-Luminosity Relation up to Solar Abundance
We have applied the infrared surface brightness (ISB) technique toderive distances to 13 Cepheid variables in the LMC that span a periodrange from 3 to 42 days. From the absolute magnitudes of the variablescalculated from these distances, we find that the LMC Cepheids definetight period-luminosity (PL) relations in the V, I, W, J, and K bandsthat agree exceedingly well with the corresponding Galactic PL relationsderived from the same technique and are significantly steeper than theLMC PL relations in these bands observed by the OGLE-II Project in V, I,and W and by Persson and coworkers in J and K. We find that the LMCCepheid distance moduli we derive, after correcting them for the tilt ofthe LMC bar, depend significantly on the period of the stars, in thesense that the shortest period Cepheids have distance moduli near 18.3,whereas the longest period Cepheids are found to lie near 18.6. Sincesuch a period dependence of the tilt-corrected LMC distance modulishould not exist, there must be a systematic, period-dependent error inthe ISB technique not discovered in previous work. We identify as themost likely culprit the p-factor, which is used to convert the observedCepheid radial velocities into their pulsational velocities. Bydemanding (1) a zero slope on the distance modulus versus period diagramand (2) a zero mean difference between the ISB and ZAMS fitting distancemoduli of a sample of well-established Galactic cluster Cepheids, wefind that p=1.58(+/-0.02)-0.15(+/-0.05)logP, with the p-factor dependingmore strongly on Cepheid period (and thus luminosity) than indicated bypast theoretical calculations. When we recalculate the distances of theLMC Cepheids with the revised p-factor law suggested by our data, we notonly obtain consistent distance moduli for all stars but also decreasethe slopes in the various LMC PL relations (and particularly in thereddening-independent K and W bands) to values that are consistent withthe values observed by OGLE-II and Persson and coworkers. From our 13Cepheids, we determine the LMC distance modulus to be 18.56+/-0.04 mag,with an additional estimated systematic uncertainty of ~0.1 mag. Usingthe same corrected p-factor law to redetermine the distances of theGalactic Cepheids, the new Galactic PL relations are also foundconsistent with the observed optical and near-infrared PL relations inthe LMC. Our main conclusion from the ISB analysis of the LMC Cepheidsample is that, within current uncertainties, there seems to be nosignificant difference between the slopes of the PL relations in theMilky Way and LMC. With literature data on more metal-poor systems, itseems now possible to conclude that the slope of the Cepheid PL relationis independent of metallicity in the broad range in [Fe/H] from -1.0 dexto solar abundance, within a small uncertainty. The new evidence fromthe first ISB analysis of a sizable sample of LMC Cepheids suggests thatthe previous, steeper Galactic PL relations obtained from this techniquewere caused by an underestimation of the period dependence in themodel-based p-factor law used in the previous work. We emphasize,however, that our current results must be substantiated by newtheoretical models capable of explaining the steeper period dependenceof the p-factor law, and we will also need data on more LMC fieldCepheids to rule out remaining concerns about the validity of ourcurrent interpretation.

Mean Angular Diameters and Angular Diameter Amplitudes of Bright Cepheids
We predict mean angular diameters and amplitudes of angular diametervariations for all monoperiodic PopulationI Cepheids brighter than=8.0 mag. The catalog is intended to aid selecting mostpromising Cepheid targets for future interferometric observations.

Improvement of the CORS method for Cepheids radii determination based on Strömgren photometry
In this paper we present a modified version of the CORS method based ona new calibration of the Surface Brightness function in theStrömgren photometric system. The method has been tested by meansof synthetic light and radial velocity curves derived from nonlinearpulsation models. Detailed simulations have been performed to take intoaccount the quality of real observed curves as well as possible shiftsbetween photometric and radial velocity data. The method has been thenapplied to a sample of Galactic Cepheids with Strömgren photometryand radial velocity data to derive the radii and a new PR relation. As aresult we find log R = (1.19 ± 0.09) + (0.74 ± 0.11) logP (rms = 0.07). The comparison between our result and previous estimatesin the literature is satisfactory. Better results are expected from theadoption of improved model atmosphere grids.

The metallicity dependence of the Cepheid PL-relation
A sample of 37 Galactic, 10 LMC and 6 SMC cepheids is compiled for whichindividual metallicity estimates exist and BVIK photometry in almost allcases. The Galactic cepheids all have an individual distance estimateavailable. For the MC objects different sources of photometry arecombined to obtain improved periods and mean magnitudes. Amulti-parameter Period-Luminosity relation is fitted to the data whichalso solves for the distance to the LMC and SMC. When all three galaxiesare considered, without metallicity effect, a significant quadratic termin log P is found, as previously observed and also predicted in sometheoretical calculations. For the present sample it is empiricallydetermined that for log P < 1.65 linear PL-relations may be adopted,but this restricts the sample to only 4 LMC and 1 SMC cepheid.Considering the Galactic sample a metallicity effect is found in thezero point in the VIWK PL-relation (-0.6 ± 0.4 or -0.8 ±0.3 mag/dex depending on the in- or exclusion of one object), in thesense that metal-rich cepheids are brighter. The small significance ismostly due to the fact that the Galactic sample spans a narrowmetallicity range. The error is to a significant part due to the errorin the metallicity determinations and not to the error in the fit.Including the 5 MC cepheids broadens the observed metallicity range anda metallity effect of about -0.27 ± 0.08 mag/dex in the zeropoint is found in VIWK, in agreement with some previous empiricalestimates, but now derived using direct metallicity determinations forthe cepheids themselves.

Period-luminosity relations for Galactic Cepheid variables with independent distance measurements
In this paper, we derive the period-luminosity (PL) relation forGalactic Cepheids with recent independent distance measurements fromopen cluster, Barnes-Evans surface brightness, interferometry and HubbleSpace Telescope astrometry techniques. Our PL relation confirms theresults from recent works, which showed that the Galactic Cepheidsfollow a different PL relation to their Large Magellanic Cloud (LMC)counterparts. Our results also show that the slope of the Galactic PLrelation is inconsistent with the LMC slope with more than 95 per centconfidence level. We apply this Galactic PL relation to find thedistance to NGC 4258. Our result of μo= 29.49 +/- 0.06 mag(random error) agrees at the ~1.4σ level with the geometricaldistance of μgeo= 29.28 +/- 0.15 mag from water masermeasurements.

The effect of metallicity on the Cepheid Period-Luminosity relation from a Baade-Wesselink analysis of Cepheids in the Galaxy and in the Small Magellanic Cloud
We have applied the near-IR Barnes-Evans realization of theBaade-Wesselink method as calibrated by Fouqué & Gieren(\cite{FG97}) to five metal-poor Cepheids with periods between 13 and 17days in the Small Magellanic Cloud as well as to a sample of 34 GalacticCepheids to determine the effect of metallicity on the period-luminosity(P-L) relation. For ten of the Galactic Cepheids we present new accurateand well sampled radial-velocity curves. The Baade-Wesselink analysisprovides accurate individual distances and luminosities for the Cepheidsin the two samples, allowing us to constrain directly, in a purelydifferential way, the metallicity effect on the Cepheid P-L relation.For the Galactic Cepheids we provide a new set of P-L relations whichhave zero-points in excellent agreement with astrometric andinterferometric determinations. These relations can be used directly forthe determination of distances to solar-metallicity samples of Cepheidsin distant galaxies, circumventing any corrections for metallicityeffects on the zero-point and slope of the P-L relation. We findevidence for both such metallicity effects in our data. Comparing ourtwo samples of Cepheids at a mean period of about 15 days, we find aweak effect of metallicity on the luminosity similar to that adopted bythe HST Key Project on the Extragalactic Distance Scale. The effect issmaller for the V band, where we find Δ MV/Δ[Fe/H] = -0.21±0.19, and larger for the Wesenheit index W, wherewe find Δ MW/Δ [Fe/H] = -0.29±0.19. Forthe I and K bands we find Δ MI/Δ [Fe/H] =-0.23± 0.19 and Δ MK/Δ [Fe/H] =-0.21± 0.19, respectively. The error estimates are 1 σstatistical errors. It seems now well established that metal-poorCepheids with periods longer than about 10 days are intrinsicallyfainter in all these bands than their metal-rich counterparts ofidentical period. Correcting the LMC distance estimate of Fouquéet al. (\cite{FSG03}) for this metallicity effect leads to a revised LMCdistance modulus of (m-M)_0 = 18.48± 0.07, which is also inexcellent agreement with the value of (m-M)_0 = 18.50± 0.10adopted by the Key Project. From our SMC Cepheid distances we determinethe SMC distance to be 18.88±0.13 magirrespective of metallicity.Some of the observations reported here were obtained with the MultipleMirror Telescope, operated jointly by the Smithsonian Institution andthe University of Arizona.Tables A.2-A.11 are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/415/531

Beobachtungsergebnisse Bundesdeutsche Arbeitsgemeinschaft fur Veranderlichen Serne e.V.
Not Available

The Power of Archival Astronomy
Examples are given of the extreme usefulness of the Harvard CollegeObservatory Photographic Plate Collection for the study of variablestars that possess only limited published observational data. Programobjects studied with the aid of archival photographic data include: (i)the eclipsing binary HD 174403, (ii) the semiregular variable BC Cygni,(iii) V439 Cygni, now recognized as a gamma Cassiopeiae variable, and(iv) the classical Cepheid T Antliae. In the Case of T Antliae, theplate archives yielded not only data for the star's brightnessvariations but also for the spectral characteristics of all starsbrighter than B = 12 in the field.

Consistent distances from Baade-Wesselink analyses of Cepheids and RR Lyraes
By using the same algorithm in the Baade-Wesselink analyses of GalacticRR Lyrae and Cepheid variables, it is shown that, within 0.03-mag1σ statistical error, they yield the same distance modulus for theLarge Magellanic Cloud. By fixing the zero-point of thecolour-temperature calibration to those of the current infrared fluxmethods and using updated period-luminosity-colour relations, we get anaverage value of 18.55 for the true distance modulus of the LMC.

A Bayesian Analysis of the Cepheid Distance Scale
We develop and describe a Bayesian statistical analysis to solve thesurface brightness equations for Cepheid distances and stellarproperties. Our analysis provides a mathematically rigorous andobjective solution to the problem, including immunity from Lutz-Kelkerbias. We discuss the choice of priors, show the construction of thelikelihood distribution, and give sampling algorithms in a Markov chainMonte Carlo approach for efficiently and completely sampling theposterior probability distribution. Our analysis averages over theprobabilities associated with several models rather than attempting topick the ``best model'' from several possible models. Using a sample of13 Cepheids we demonstrate the method. We discuss diagnostics of theanalysis and the effects of the astrophysical choices going into themodel. We show that we can objectively model the order of Fourierpolynomial fits to the light and velocity data. By comparison withtheoretical models of Bono et al. we find that EU Tau and SZ Tau areovertone pulsators, most likely without convective overshoot. Theperiod-radius and period-luminosity relations we obtain are shown to becompatible with those in the recent literature. Specifically, we findlog()=(0.693+/-0.037)[log(P)-1.2]+(2.042+/-0.047) andv>=-(2.690+/-0.169)[log(P)-1.2]-(4.699+/-0.216).

Interstellar Extinction and the Intrinsic Colors of Classical Cepheids in the Galaxy, the LMC, and the SMC
New methods are applied to samples of classical cepheids in the galaxy,the Large Magellanic Cloud, and the Small Magellanic Cloud to determinethe interstellar extinction law for the classical cepheids, R B:R V:RI:R J:R H:R K= 4.190:3.190:1.884:0.851:0.501:0.303, the color excessesfor classical cepheids in the galaxy,E(B-V)=-0.382-0.168logP+0.766(V-I), and the color excesses for classicalcepheids in the LMC and SMC, E(B-V)=-0.374-0.166logP+0.766(V-I). Thedependence of the intrinsic color (B-V)0 on the metallicity of classicalcepheids is discussed. The intrinsic color (V-I)0 is found to beabsolutely independent of the metallicity of classical cepheids. A highprecision formula is obtained for calculating the intrinsic colors ofclassical cepheids in the galaxy:(-)0=0.365(±0.011)+0.328(±0.012)logP.

New Period-Luminosity and Period-Color relations of classical Cepheids: I. Cepheids in the Galaxy
321 Galactic fundamental-mode Cepheids with good B, V, and (in mostcases) I photometry by Berdnikov et al. (\cite{Berdnikov:etal:00}) andwith homogenized color excesses E(B-V) based on Fernie et al.(\cite{Fernie:etal:95}) are used to determine their period-color (P-C)relation in the range 0.4~ 1.4). The latter effect is enhanced by asuggestive break of the P-L relation of LMC and SMC at log P = 1.0towards still shallower values as shown in a forthcoming paper.Table 1 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/404/423

The Distance Scale for Classical Cepheid Variables
New radii, derived from a modified version of the Baade-Wesselink (BW)method that is tied to published KHG narrowband spectrophotometry, arepresented for 13 bright Cepheids. The data yield a best-fittingperiod-radius relation given bylog=1.071(+/-0.025)+0.747(+/-0.028)logP0. In combination with other high-quality radiusestimates recently published by Laney & Stobie, the new data yield aperiod-radius relation described bylog=1.064(+/-0.0006)+0.750(+/-0.006)logP0, which simplifies to ~P3/4.The relationship is used to test the scale of Cepheid luminositiesinferred from cluster zero-age main-sequence (ZAMS) fitting, for whichwe present an updated list of calibrating Cepheids located in stellargroups. The cluster ZAMS-fitting distance scale tied to a Pleiadesdistance modulus of 5.56 is found to agree closely with the distancescale defined by Hipparcos parallaxes of cluster Cepheids and alsoyields Cepheid luminosities that are a good match to those inferred fromthe period-radius relation. The mean difference between absolute visualmagnitudes based on cluster ZAMS fitting,C, and those inferred for 23 clusterCepheids from radius and effective temperature estimates,BW, in the sense of C-BW is+0.019+/-0.029 s.e. There is no evidence to indicate the need for amajor revision to the Cepheid cluster distance scale. The absolutemagnitude differences are examined using available [Fe/H] data for thecluster Cepheid sample to test the metallicity dependence of theperiod-luminosity relation. Large scatter and a small range ofmetallicities hinder a reliable estimate of the exact relationship,although the data are fairly consistent with predictions from stellarevolutionary models. The derived dependence isΔMV(C-BW)=+0.06(+/-0.03)-0.43(+/-0.54)[ Fe/H].

Two Period-Radius Relations for Classical Cepheids: Determining the Pulsation Mode and the Distance Scale
Not Available

Calibration of the distance scale from galactic Cepheids. I. Calibration based on the GFG sample
New estimates of the distances of 36 nearby galaxies are presented basedon accurate distances of galactic Cepheids obtained by Gieren et al.(1998) from the geometrical Barnes-Evans method. The concept of``sosie'' is applied to extend the distance determination toextragalactic Cepheids without assuming the linearity of the PLrelation. Doing so, the distance moduli are obtained in astraightforward way. The correction for extinction is made using twophotometric bands (V and I) according to the principles introduced byFreedman & Madore (1990). Finally, the statistical bias due to theincompleteness of the sample is corrected according to the preceptsintroduced by Teerikorpi (1987) without introducing any free parameters(except the distance modulus itself in an iterative scheme). The finaldistance moduli depend on the adopted extinction ratioRV/RI and on the limiting apparent magnitude ofthe sample. A comparison with the distance moduli recently published bythe Hubble Space Telescope Key Project (HSTKP) team reveals a fairagreement when the same ratio RV/RI is used butshows a small discrepancy at large distance. In order to bypass theuncertainty due to the metallicity effect it is suggested to consideronly galaxies having nearly the same metallicity as the calibratingCepheids (i.e. Solar metallicity). The internal uncertainty of thedistances is about 0.1 mag but the total uncertainty may reach 0.3 mag.The table of the Appendix and Table 3 are available in electronic format CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/383/398, and on ouranonymous ftp-server www-obs.univ-lyon1.fr (pub/base/CEPHEIDES.tar.gz).

Beobachtungsergebnisse Bundesdeutsche Arbeitsgemeinschaft fur Veraenderliche Sterne e.V.
Not Available

Stellar populations in Seyfert 2 galaxies. I. Atlas of near-UV spectra
We have carried out a uniform spectroscopic survey of Seyfert 2 galaxiesto study the stellar populations of the host galaxies. New spectra havebeen obtained for 79 Southern galaxies classified as Seyfert 2 galaxies,7 normal galaxies, and 73 stars at a resolution of 2.2 Å over thewavelength region 3500-5300 Å. Cross-correlation between thestellar spectra is performed to group the individual observations into44 synthesis standard spectra. The standard groups include a solarabundance sequence of spectral types from O5 to M3 for dwarfs, giants,and supergiants. Metal-rich and metal-weak F-K giants and dwarfs arealso included. A comparison of the stellar data with previouslypublished spectra is performed both with the individual spectra and thestandard groups. For each galaxy, two distinct spatial regions areconsidered: the nucleus and the external bulge. Spectroscopic variationsfrom one galaxy to another and from the central to the external regionare briefly discussed. It is found that the central region of a Seyfert2 galaxy, after subtracting the bulge stellar population, always shows anear-UV spectrum similar to one of three representative categories: a)many strong emission lines and only two visible absorption lines (Ca IiK and G band) (Sey2e); b) few emission lines, many absorption lines, anda redder continuum than the previous category (Sey2a); c) an almost flatcontinuum and high-order Balmer lines seen in absorption (Sey2b). Theproportion of Seyfert 2 galaxies belonging to each class is found to be22%, 28%, and 50% respectively. We find no significative differencesbetween morphology distributions of Seyfert 2 galaxies with Balmer linesdetected in absorption and the rest of the sample. This quick lookthrough the atlas indicates that half of Seyfert 2 galaxies harbour ayoung stellar population (about or less than 100 Myr) in their centralregion, clearly unveiled by the high order Balmer series seen inabsorption. Based on observations collected at the European SouthernObservatory, Chile (ESO 65.P-0014(A)). Tables 1-3 and 8 and Fig. A.1(Appendix A) are only available in electronic form athttp://www.edpsciences.org

Spectroscopic investigations of classical Cepheids and main-sequence stars in galactic open clusters and associations. I. Association Cas OB2 and the small-amplitude Cepheid SU Cassiopeae
The small-amplitude Cepheid SU Cas and four membersof the association Cas OB2 (HD 16893, HD17327a and b, HD 17443) were investigated,using high-resolution CCD spectra. The following results were obtained:1) All these objects have the same metallicity values, close to that ofthe Sun; 2) Elemental abundance indicates that SU Cas is a post firstdredge-up star with an age from 1 108 to 1.45 108yr, and it is not crossing the Cepheid instability strip for the firsttime. The mean value of log g = 2.35 corresponds to pulsations in thefundamental tone, although errors in gravity estimations provideovertone pulsations. The questions about its pulsational mode andmembership in Cas OB2 remained open; 3) HD17327a is a slowly rotating HgMn-star with the highest heliumcontent among such objects, while HD 16893 also has a manganeseoverabundance and might be classified as an Am-star; 4) HD17327b and HD 17443 are rapidly rotating main-sequence stars,while HD 17443 has a helium content comparable with that of the Sun.

Catalogue of Apparent Diameters and Absolute Radii of Stars (CADARS) - Third edition - Comments and statistics
The Catalogue, available at the Centre de Données Stellaires deStrasbourg, consists of 13 573 records concerning the results obtainedfrom different methods for 7778 stars, reported in the literature. Thefollowing data are listed for each star: identifications, apparentmagnitude, spectral type, apparent diameter in arcsec, absolute radiusin solar units, method of determination, reference, remarks. Commentsand statistics obtained from CADARS are given. The Catalogue isavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcar?J/A+A/367/521

Beobachtungsergebnisse Bundesdeutsche Arbeitsgemeinschaft fur Veraenderliche Sterne e.V.
Not Available

Stars with the Largest Hipparcos Photometric Amplitudes
A list of the 2027 stars that have the largest photometric amplitudes inHipparcos Photometry shows that most variable stars are all Miras. Thepercentage of variable types change as a function of amplitude. Thiscompilation should also be of value to photometrists looking forrelatively unstudied, but large amplitude stars.

Absolute proper motions of open clusters. I. Observational data
Mean proper motions and parallaxes of 205 open clusters were determinedfrom their member stars found in the Hipparcos Catalogue. 360 clusterswere searched for possible members, excluding nearby clusters withdistances D < 200 pc. Members were selected using ground basedinformation (photometry, radial velocity, proper motion, distance fromthe cluster centre) and information provided by Hipparcos (propermotion, parallax). Altogether 630 certain and 100 possible members werefound. A comparison of the Hipparcos parallaxes with photometricdistances of open clusters shows good agreement. The Hipparcos dataconfirm or reject the membership of several Cepheids in the studiedclusters. Tables 1 and 2 are only available in electronic form at theCDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

The intermediate-band approach to the surface-brightness method for Cepheid radii and distance determination
The surface-brightness parameter Fν is calibrated in termsof the Strömgren intermediate-band colour b-y. The relationFν-(b-y)o valid for Cepheids is calibratedusing accurate near-infrared radii and distances for selected Cepheids.We have obtained uvby photometry for non-Cepheid giant and supergiantstars with known angular diameters and compared the slope and zero-pointof their Fν-(b-y)o relation with the Cepheidcalibration. We found that the two calibrations are significantlydifferent. The theoretical models lie in between the two calibrations.It is remarked that Fν-colour relations derived fromnon-Cepheids and involving blue colours (e.g. B-V or b-y) are notapplicable to Cepheids, while those involving redder colours (e.g. V-R,V-K or V-J) also produce good radii for Cepheids. Selected Cepheids ascalibrators lead to the accurate relationFν=3.898(+/-0.003)-0.378(+/-0.006)(b-y)o, whichallowed the calculation of radii and distances for a sample of 59Galactic Cepheids. The uncertainties in the zero-point and slope of theabove relation are similar to those obtained from near-infrared colours,and determine the accuracies in radii and distance calculations. Whileinfrared light and colour curves for Cepheids may be superior inprecision, the intermediate-band b-y colour allows the recovery of meanradii with an accuracy comparable to those obtained from the infraredsolutions. The derived distances are consistent within the uncertaintieswith those predicted by a widely accepted period-luminosityrelationship. Likewise, the resulting period-radius relation from theintermediate-band approach is in better agreement with infrared versionsthan with optical versions of this law. It is highlighted that theintermediate-band calibration of the surface-brightness method in thiswork is of comparable accuracy to the near-infrared calibrations. Thepresent results stress the virtues of uvby in determining the physicalparameters of supergiant stars of intermediate temperature.

Galactic Cepheids. Catalogue of light-curve parameters and distances
We report a new version of the catalogue of distances and light-curveparameters for Galactic classical Cepheids. The catalogue listsamplitudes, magnitudes at maximum light, and intensity means for 455stars in BVRI filters of the Johnson system and (RI)_C filters of theCron-Cousins system. The distances are based on our new multicolour setof PL relations and on our Cepheid-based solution for interstellarextinction law parameters and are referred to an LMC distance modulus of18.25. The catalogue is only available in electronic form at the CDS viaanonymous ftp (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

提交文章


相关链接

  • - 没有找到链接 -
提交链接


下列团体成员


观测天体数据

星座:人馬座
右阿森松:18h50m59.87s
赤纬:-20°17'42.8"
视星:6.941
距离:1639.344 天文距离
右阿森松适当运动:1.4
赤纬适当运动:-6.2
B-T magnitude:8.132
V-T magnitude:7.04

目录:
适当名称
HD 1989HD 174383
TYCHO-2 2000TYC 6289-3062-1
USNO-A2.0USNO-A2 0675-30163697
HIPHIP 92491

→ 要求更多目录从vizier