首页     To Survive in the Universe    
Services
    Why to Inhabit     Top Contributors     天文图片     收集     论坛     Blog New!     常见问题     登录  
→ Adopt this star  

HD 31913


目录

图像

上传图像

DSS Images   Other Images


相关文章

Period-colour and amplitude-colour relations in classical Cepheid variables - IV. The multiphase relations
The superb phase resolution and quality of the Optical GravitationalLensing Experiment (OGLE) data on the Large Magellanic Cloud (LMC) andSmall Magellanic Cloud (SMC) Cepheids, together with existing data onGalactic Cepheids, are combined to study the period-colour (PC) andamplitude-colour (AC) relations as a function of pulsation phase. Ourresults confirm earlier work that the LMC PC relation (at mean light) ismore consistent with two lines of differing slopes, separated at aperiod of 10 d. However, our multiphase PC relations reveal much newstructure which can potentially increase our understanding of Cepheidvariables. These multiphase PC relations provide insight into why theGalactic PC relation is linear but the LMC PC relation is non-linear.This is because the LMC PC relation is shallower for short (logP < 1)and steeper for long (logP > 1) period Cepheids than thecorresponding Galactic PC relation. Both of the short- and long-periodCepheids in all three galaxies exhibit the steepest and shallowestslopes at phases around 0.75-0.85, respectively. A consequence is thatthe PC relation at phase ~ 0.8 is highly non-linear. Further, theGalactic and LMC Cepheids with logP > 1 display a flat slope in thePC plane at phases close to the maximum light. When the LMCperiod-luminosity (PL) relation is studied as a function of phase, weconfirm that it changes with the PC relation. The LMC PL relation in Vand I band near the phase of 0.8 provides compelling evidence that thisrelation is also consistent with two lines of differing slopes joined ata period close to 10 d.

Elemental Abundance Ratios in Stars of the Outer Galactic Disk. III. Cepheids
We present metallicities, [Fe/H], and elemental abundance ratios,[X/Fe], for a sample of 24 Cepheids in the outer Galactic disk based onhigh-resolution echelle spectra. The sample members have galactocentricdistances covering 12 kpc<=RGC<=17.2 kpc, making themthe most distant Galactic Cepheids upon which detailed abundanceanalyses have been performed. We find subsolar ratios of [Fe/H] andoverabundances of [α/Fe], [La/Fe], and [Eu/Fe] in the programstars. All abundance ratios exhibit a dispersion that exceeds themeasurement uncertainties. As seen in our previous studies of old openclusters and field giants, enhanced ratios of [α/Fe] and [Eu/Fe]reveal that recent star formation has taken place in the outer disk withType II supernovae preferentially contributing ejecta to theinterstellar medium and with Type Ia supernovae playing only a minorrole. The enhancements for La suggest that asymptotic giant branch starshave contributed to the chemical evolution of the outer Galactic disk.Some of the young Cepheids are more metal-poor than the older openclusters and field stars at comparable galactocentric distances. Thisdemonstrates that the outer disk is not the end result of the isolatedevolution of an ensemble of gas and stars. We showed previously that theolder open clusters and field stars reached a basement metallicity atabout 10-11 kpc. The younger Cepheids reach the same metallicity but atlarger galactocentric distances, roughly 14 kpc. This suggests that theGalactic disk has been growing with time, as predicted from numericalsimulations. The outer disk Cepheids appear to exhibit a bimodaldistribution for [Fe/H] and [α/Fe]. Most of the Cepheids continuethe trends with galactocentric distance exhibited by S. M. Andrievsky'slarger Cepheid sample, and we refer to these stars as the ``GalacticCepheids.'' A minority of the Cepheids show considerably lower [Fe/H]and higher [α/Fe], and we refer to these stars as the ``MergerCepheids.'' One signature of a merger event would be compositiondifferences between the Galactic and Merger Cepheids. The Cepheidssatisfy this requirement, and we speculate that the distinctcompositions suggest that the Merger Cepheids may have formed under theinfluence of significant merger or accretion events. The short lifetimesof the Cepheids reveal that the merger event may be ongoing, with theMonoceros Ring and Canis Major galaxy being possible merger candidates.This paper makes use of observations obtained at the National OpticalAstronomy Observatory, which is operated by the Association ofUniversities for Research in Astronomy (AURA), Inc., under contract fromthe National Science Foundation. We also employ data products from theTwo Micron All Sky Survey, which is a joint project of the University ofMassachusetts and the Infrared Processing and Analysis Center,California Institute of Technology, funded by the National Aeronauticsand Space Administration and the National Science Foundation.

Beobachtungsergebnisse Bundesdeutsche Arbeitsgemeinschaft fur Veranderliche Sterne e.V.
Not Available

Galactic Cepheids. II. Lithium
We report on the discovery of two lithium Cepheids in the Galaxy, basedon observations made with the echelle spectrograph of the Apache PointObservatory. We have used high-resolution, high signal-to-noise ratiospectra to determine abundances of chemical elements in 16 classicalCepheids. Only two of our program stars show a lithium line, RX Aur andYZ Aur (RX Aur has been also classified by us as a new nonradialpulsator). For the others, including the stars with [N/C]<0.2, Li isdepleted up to logN(Li)<1.0. Hence, it appears that mixing depletesLi before stars enter the instability strip. According to stellarmodels, the main mixing event takes place when Teff dropsbelow 4000 K, which is outside the red edge of the instability strip;i.e., after stars have crossed the instability strip for the first time.

Galactic Cepheids. I. Elemental Abundances and Their Implementation for Stellar and Galactic Evolution
We have added data for 16 distant Cepheids observed with the echellespectrograph of the Apache Point 3.5 m telescope to improve thecorrelations of abundance parameters with pulsation period and distancefrom the Galactic center (RG ). While we see no importanttrends with pulsation period, some important ratios are closely relatedto the evolution of stars through the instability strip. The mostinteresting is the N/C ratio, which is predicted to be enhanced by afactor of 4 when an evolving supergiant cools to Teff=4000 Kand the outer convection zone reaches the depth at which CN processinghas converted C to N. We find a Gaussian distribution around a value of[N/C]=0.6, just as predicted. The ratio of about 30:1 mixed to unmixedstars can be taken as the ratio of evolutionary time spent on the blueloop to the time spent on the first crossing through the instabilitystrip. According to stellar models, the main mixing event takes placewhen Teff drops below 4000 K, which is outside the red edgeof the instability strip; i.e., after stars have crossed the instabilitystrip for the first time. We have confirmed previously knowncorrelations of [Fe/H] with RG. We find that [Fe/H] shows agradient of -0.06 Kpc-1. The only other significant gradientis that of [Eu/Fe], which increases with RG, thereby showingan increasing ratio of SN II/SN Ia in the outer Galaxy.

Mean Angular Diameters and Angular Diameter Amplitudes of Bright Cepheids
We predict mean angular diameters and amplitudes of angular diametervariations for all monoperiodic PopulationI Cepheids brighter than=8.0 mag. The catalog is intended to aid selecting mostpromising Cepheid targets for future interferometric observations.

Phase-dependent Variation of the Fundamental Parameters of Cepheids. II. Periods Longer than 10 Days
We present the results of a detailed multiphase spectroscopic analysisof 14 classical Cepheids with pulsation periods longer than 10 days. Foreach star, we have derived phased values of effective temperature,surface gravity, microturbulent velocity, and elemental abundances. Weshow that the elemental abundance results for these Cepheids areconsistent for all pulsational phases.

Welchen Lichtwechsel kann ein Beobachter bei Cepheiden erwarten?
Not Available

Improvement of the CORS method for Cepheids radii determination based on Strömgren photometry
In this paper we present a modified version of the CORS method based ona new calibration of the Surface Brightness function in theStrömgren photometric system. The method has been tested by meansof synthetic light and radial velocity curves derived from nonlinearpulsation models. Detailed simulations have been performed to take intoaccount the quality of real observed curves as well as possible shiftsbetween photometric and radial velocity data. The method has been thenapplied to a sample of Galactic Cepheids with Strömgren photometryand radial velocity data to derive the radii and a new PR relation. As aresult we find log R = (1.19 ± 0.09) + (0.74 ± 0.11) logP (rms = 0.07). The comparison between our result and previous estimatesin the literature is satisfactory. Better results are expected from theadoption of improved model atmosphere grids.

The metallicity dependence of the Cepheid PL-relation
A sample of 37 Galactic, 10 LMC and 6 SMC cepheids is compiled for whichindividual metallicity estimates exist and BVIK photometry in almost allcases. The Galactic cepheids all have an individual distance estimateavailable. For the MC objects different sources of photometry arecombined to obtain improved periods and mean magnitudes. Amulti-parameter Period-Luminosity relation is fitted to the data whichalso solves for the distance to the LMC and SMC. When all three galaxiesare considered, without metallicity effect, a significant quadratic termin log P is found, as previously observed and also predicted in sometheoretical calculations. For the present sample it is empiricallydetermined that for log P < 1.65 linear PL-relations may be adopted,but this restricts the sample to only 4 LMC and 1 SMC cepheid.Considering the Galactic sample a metallicity effect is found in thezero point in the VIWK PL-relation (-0.6 ± 0.4 or -0.8 ±0.3 mag/dex depending on the in- or exclusion of one object), in thesense that metal-rich cepheids are brighter. The small significance ismostly due to the fact that the Galactic sample spans a narrowmetallicity range. The error is to a significant part due to the errorin the metallicity determinations and not to the error in the fit.Including the 5 MC cepheids broadens the observed metallicity range anda metallity effect of about -0.27 ± 0.08 mag/dex in the zeropoint is found in VIWK, in agreement with some previous empiricalestimates, but now derived using direct metallicity determinations forthe cepheids themselves.

Period-luminosity relations for Galactic Cepheid variables with independent distance measurements
In this paper, we derive the period-luminosity (PL) relation forGalactic Cepheids with recent independent distance measurements fromopen cluster, Barnes-Evans surface brightness, interferometry and HubbleSpace Telescope astrometry techniques. Our PL relation confirms theresults from recent works, which showed that the Galactic Cepheidsfollow a different PL relation to their Large Magellanic Cloud (LMC)counterparts. Our results also show that the slope of the Galactic PLrelation is inconsistent with the LMC slope with more than 95 per centconfidence level. We apply this Galactic PL relation to find thedistance to NGC 4258. Our result of μo= 29.49 +/- 0.06 mag(random error) agrees at the ~1.4σ level with the geometricaldistance of μgeo= 29.28 +/- 0.15 mag from water masermeasurements.

Cepheidenbeobachtung in der BAV: Ruckblick und Ausblick.
Not Available

Beobachtungsergebnisse Bundesdeutsche Arbeitsgemeinschaft fur Veranderlichen Serne e.V.
Not Available

Sodium enrichment of the stellar atmospheres. II. Galactic Cepheids
The present paper is a continuation of our study of the sodium abundancein supergiant atmospheres (Andrievsky et al. 2002a). We present theresults on the NLTE abundance determination in Cepheids, and the derivedrelation between the sodium overabundance and their masses.

A Bayesian Analysis of the Cepheid Distance Scale
We develop and describe a Bayesian statistical analysis to solve thesurface brightness equations for Cepheid distances and stellarproperties. Our analysis provides a mathematically rigorous andobjective solution to the problem, including immunity from Lutz-Kelkerbias. We discuss the choice of priors, show the construction of thelikelihood distribution, and give sampling algorithms in a Markov chainMonte Carlo approach for efficiently and completely sampling theposterior probability distribution. Our analysis averages over theprobabilities associated with several models rather than attempting topick the ``best model'' from several possible models. Using a sample of13 Cepheids we demonstrate the method. We discuss diagnostics of theanalysis and the effects of the astrophysical choices going into themodel. We show that we can objectively model the order of Fourierpolynomial fits to the light and velocity data. By comparison withtheoretical models of Bono et al. we find that EU Tau and SZ Tau areovertone pulsators, most likely without convective overshoot. Theperiod-radius and period-luminosity relations we obtain are shown to becompatible with those in the recent literature. Specifically, we findlog()=(0.693+/-0.037)[log(P)-1.2]+(2.042+/-0.047) andv>=-(2.690+/-0.169)[log(P)-1.2]-(4.699+/-0.216).

New Period-Luminosity and Period-Color relations of classical Cepheids: I. Cepheids in the Galaxy
321 Galactic fundamental-mode Cepheids with good B, V, and (in mostcases) I photometry by Berdnikov et al. (\cite{Berdnikov:etal:00}) andwith homogenized color excesses E(B-V) based on Fernie et al.(\cite{Fernie:etal:95}) are used to determine their period-color (P-C)relation in the range 0.4~ 1.4). The latter effect is enhanced by asuggestive break of the P-L relation of LMC and SMC at log P = 1.0towards still shallower values as shown in a forthcoming paper.Table 1 is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/404/423

Line profile variations in classical Cepheids. Evidence for non-radial pulsations?
We have investigated line profiles in a large sample of Cepheid spectra,and found four stars that show unusual (for Cepheids) line profilestructure (bumps or/and asymmetries). The profiles can be phasedependent but the behavior persists over many cycles. The asymmetriesare unlikely to be due to the spectroscopic binarity of these stars orthe specific velocity field in their atmospheres caused by shock waves.As a preliminary hypothesis, we suggest that the observed features onthe line profiles in the spectra of X Sgr, V1334 Cyg, EV Sct and BG Crucan be caused by the non-radial oscillations. It is possible that thesenon-radial oscillations are connected to resonances between the radialmodes (3fd2 , 7fd5 or 10fd0 ).Based on spectra collected at McDonald 2.1 m and Kitt Peak 4 m (USA),CTIO 4 m (Chile) and MSO 1.8 m (Australia).

Beobachtungsegebnisse Bundesdeutsche Arbeitsgemainschaft fur Veranderliche Sterne e.V.
Not Available

The Distance Scale for Classical Cepheid Variables
New radii, derived from a modified version of the Baade-Wesselink (BW)method that is tied to published KHG narrowband spectrophotometry, arepresented for 13 bright Cepheids. The data yield a best-fittingperiod-radius relation given bylog=1.071(+/-0.025)+0.747(+/-0.028)logP0. In combination with other high-quality radiusestimates recently published by Laney & Stobie, the new data yield aperiod-radius relation described bylog=1.064(+/-0.0006)+0.750(+/-0.006)logP0, which simplifies to ~P3/4.The relationship is used to test the scale of Cepheid luminositiesinferred from cluster zero-age main-sequence (ZAMS) fitting, for whichwe present an updated list of calibrating Cepheids located in stellargroups. The cluster ZAMS-fitting distance scale tied to a Pleiadesdistance modulus of 5.56 is found to agree closely with the distancescale defined by Hipparcos parallaxes of cluster Cepheids and alsoyields Cepheid luminosities that are a good match to those inferred fromthe period-radius relation. The mean difference between absolute visualmagnitudes based on cluster ZAMS fitting,C, and those inferred for 23 clusterCepheids from radius and effective temperature estimates,BW, in the sense of C-BW is+0.019+/-0.029 s.e. There is no evidence to indicate the need for amajor revision to the Cepheid cluster distance scale. The absolutemagnitude differences are examined using available [Fe/H] data for thecluster Cepheid sample to test the metallicity dependence of theperiod-luminosity relation. Large scatter and a small range ofmetallicities hinder a reliable estimate of the exact relationship,although the data are fairly consistent with predictions from stellarevolutionary models. The derived dependence isΔMV(C-BW)=+0.06(+/-0.03)-0.43(+/-0.54)[ Fe/H].

Two Period-Radius Relations for Classical Cepheids: Determining the Pulsation Mode and the Distance Scale
Not Available

Using Cepheids to determine the galactic abundance gradient. I. The solar neighbourhood
A number of studies of abundance gradients in the galactic disk havebeen performed in recent years. The results obtained are ratherdisparate: from no detectable gradient to a rather significant slope ofabout -0.1 dex kpc-1. The present study concerns theabundance gradient based on the spectroscopic analysis of a sample ofclassical Cepheids. These stars enable one to obtain reliable abundancesof a variety of chemical elements. Additionally, they have welldetermined distances which allow an accurate determination of abundancedistributions in the galactic disc. Using 236 high resolution spectra of77 galactic Cepheids, the radial elemental distribution in the galacticdisc between galactocentric distances in the range 6-11 kpc has beeninvestigated. Gradients for 25 chemical elements (from carbon togadolinium) are derived. The following results were obtained in thisstudy. Almost all investigated elements show rather flat abundancedistributions in the middle part of galactic disc. Typical values foriron-group elements lie within an interval from ~-0.02 to ~-0.04 dexkpc-1 (in particular, for iron we obtainedd[Fe/H]/dRG =-0.029 dex kpc-1). Similar gradientswere also obtained for O, Mg, Al, Si, and Ca. For sulphur we have founda steeper gradient (-0.05 dex kpc-1). For elements from Zr toGd we obtained (within the error bars) a near to zero gradient value.This result is reported for the first time. Those elements whoseabundance is not expected to be altered during the early stellarevolution (e.g. the iron-group elements) show at the solargalactocentric distance [El/H] values which are essentially solar.Therefore, there is no apparent reason to consider our Sun as ametal-rich star. The gradient values obtained in the present studyindicate that the radial abundance distribution within 6-11 kpc is quitehomogeneous, and this result favors a galactic model including a barstructure which may induce radial flows in the disc, and thus may beresponsible for abundance homogenization. Based on spectra collected atMcDonald - USA, SAORAS - Russia, KPNO - USA, CTIO - Chile, MSO -Australia, OHP - France. Full Table 1 is only available in electronicform at http://www.edpsciences.org Table A1 (Appendix) is only, andTable 2 also, available in electronic form at the CDS via anonymous ftpto cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/381/32

Catalogue of Apparent Diameters and Absolute Radii of Stars (CADARS) - Third edition - Comments and statistics
The Catalogue, available at the Centre de Données Stellaires deStrasbourg, consists of 13 573 records concerning the results obtainedfrom different methods for 7778 stars, reported in the literature. Thefollowing data are listed for each star: identifications, apparentmagnitude, spectral type, apparent diameter in arcsec, absolute radiusin solar units, method of determination, reference, remarks. Commentsand statistics obtained from CADARS are given. The Catalogue isavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcar?J/A+A/367/521

Beobachtungsergebnisse Bundesdeutsche Arbeitsgemeinschaft fur Veraenderliche Sterne e.V.
Not Available

Stars with the Largest Hipparcos Photometric Amplitudes
A list of the 2027 stars that have the largest photometric amplitudes inHipparcos Photometry shows that most variable stars are all Miras. Thepercentage of variable types change as a function of amplitude. Thiscompilation should also be of value to photometrists looking forrelatively unstudied, but large amplitude stars.

Galactic Cepheids. Catalogue of light-curve parameters and distances
We report a new version of the catalogue of distances and light-curveparameters for Galactic classical Cepheids. The catalogue listsamplitudes, magnitudes at maximum light, and intensity means for 455stars in BVRI filters of the Johnson system and (RI)_C filters of theCron-Cousins system. The distances are based on our new multicolour setof PL relations and on our Cepheid-based solution for interstellarextinction law parameters and are referred to an LMC distance modulus of18.25. The catalogue is only available in electronic form at the CDS viaanonymous ftp (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

Multi-colour PL-relations of Cepheids in the bt HIPPARCOS catalogue and the distance to the LMC
We analyse a sample of 236 Cepheids from the hipparcos catalog, usingthe method of ``reduced parallaxes'' in V, I, K and the reddening-free``Wesenheit-index''. We compare our sample to those considered by Feast& Catchpole (1997) and Lanoix et al. (1999), and argue that oursample is the most carefully selected one with respect to completeness,the flagging of overtone pulsators, and the removal of Cepheids that mayinfluence the analyses for various reasons (double-mode Cepheids,unreliable hipparcos solutions, possible contaminated photometry due tobinary companions). From numerical simulations, and confirmed by theobserved parallax distribution, we derive a (vertical) scale height ofCepheids of 70 pc, as expected for a population of 3-10 Msunstars. This has consequences for Malmquist- and Lutz-Kelker (Lutz &Kelker 1973, Oudmaijer et al. 1998) type corrections which are smallerfor a disk population than for a spherical population. The V and I datasuggest that the slope of the Galactic PL-relations may be shallowerthan that observed for LMC Cepheids, either for the whole period range,or that there is a break at short periods (near log P_0 ~ 0.7-0.8). Westress the importance of two systematic effects which influence thedistance to the LMC: the slopes of the Galactic PL-relations andmetallicity corrections. In order to assess the influence of thesevarious effects, we present 27 distance moduli (DM) to the LMC. Theseare based on three different colours (V,I,K), three different slopes(the slope observed for Cepheids in the LMC, a shallower slope predictedfrom one set of theoretical models, and a steeper slope as derived forGalactic Cepheids from the surface-brightness technique), and threedifferent metallicity corrections (no correction as predicted by one setof theoretical models, one implying larger DM as predicted by anotherset of theoretical models, and one implying shorter DM based onempirical evidence). We derive DM between 18.45 +/- 0.18 and 18.86 +/-0.12. The DM based on K are shorter than those based on V and I andrange from 18.45 +/- 0.18 to 18.62 +/- 0.19, but the DM in K could besystematically too low by about 0.1 magnitude because of a bias due tothe fact that NIR photometry is available only for a limited number ofstars. From the Wesenheit-index we derive a DM of 18.60 +/- 0.11,assuming the observed slope of LMC Cepheids and no metallicitycorrection, for want of more information. The DM to the LMC based on theparallax data can be summarised as follows. Based on the PL-relation inV and I, and the Wesenheit-index, the DM is 18.60 ± 0.11(± 0.08 slope)(^{+0.08}_{-0.15} ;metallicity), which is ourcurrent best estimate. Based on the PL-relation in K the DM is ;;;;18.52 +/- 0.18 (± 0.03 ;slope) (± 0.06 ;metallicity)(^{+0.10}_{-0} ;sampling ;bias). The random error is mostly due to thegiven accuracy of the hipparcos parallaxes and the number of Cepheids inthe respective samples. The terms between parentheses indicate thepossible systematic uncertainties due to the slope of the GalacticPL-relations, the metallicity corrections, and in the K-band, due to thelimited number of stars. Recent work by Sandage et al. (1999) indicatesthat the effect of metallicity towards shorter distances may be smallerin V and I than indicated here. From this, we point out the importanceof obtaining NIR photometry for more (closeby) Cepheids, as for themoment NIR photometry is only available for 27% of the total sample.This would eliminate the possible bias due to the limited number ofstars, and would reduce the random error estimate from 0.18 to about0.10 mag. Furthermore, the sensitivity of the DM to reddening,metallicity correction and slope are smallest in the K-band. Based ondata from the ESA HP astrometry satellite.

Détermination des rayons de Céphéides. V. Vitesses radiales et dimensions de 22 Céphéides galactiques. Determination of the radii of Cepheids V. Radial velocities and dimensions of 22 galactic Cepheids
We present radial velocity data for 22 galactic Cepheid stars obtainedwith Coravel spectrometer. Continuous observation over several years hasenabled us to obtain 852 individual velocities covering all the phasesof the pulsation. The mean number of measurements per star is 39,ranging from 20 to 113. For each star radial velocity versus phasediagrams have been fitted by analytical relation, and the stellar radiusvariation has been derived by integration of this relation over thewhole period. Using recent ubv photometry of the literature and velocitycurves, we have calculated the radii of the stars using a method basedon the Baade-Wesselink concept. For these 22 Cepheids we give a linearlogarithmic period-radius relation with a range of 2,4 to 45 days. Lesobservations ont été effectuées àl'Observatoire de Haute-Provence (CNRS). Le tableau 1 est disponibleseulement sous forme électronique au CDS via ftp àcdsarc.u-strasbg.fr (130.79.128.5) ou viahttp://cdsweb.u-strasbg.fr/Abstract.html

Direct calibration of the Cepheid period-luminosity relation
After the first release of Hipparcos data, Feast & Catchpole gave anew value for the zero-point of the visual Cepheid period-luminosityrelation, based on trigonometric parallaxes. Because of the largeuncertainties on these parallaxes, the way in which individualmeasurements are weighted is of crucial importance. We thereforeconclude that the choice of the best weighting system can be aided by aMonte Carlo simulation. On the basis of such a simulation, it is shownthat (i) a cut-off in π or in σ_ππ introduces a strongbias; (ii) the zero-point is more stable when only the brightestCepheids are used; and (iii) the Feast & Catchpole weighting givesthe best zero-point and the lowest dispersion. After correction, theadopted visual period-luminosity relation is=-2.77logP-1.44+/-0.05. Moreover, we extend this study to thephotometric I band (Cousins) and obtain=-3.05logP-1.81+/-0.09.

I- and JHK-band photometry of classical Cepheids in the HIPPARCOS catalog
By correlating the \cite[Fernie et al. (1995)]{F95} electronic databaseon Cepheids with the ``resolved variable catalog'' of the hipparcosmission and the simbad catalog one finds that there are 280 Cepheids inthe hipparcos catalog. By removing W Vir stars (Type ii Cepheids),double-mode Cepheids, Cepheids with an unreliable solution in thehipparcos catalog, and stars without photometry, it turns out that thereare 248 classical Cepheids left, of which 32 are classified asfirst-overtone pulsators. For these stars the literature was searchedfor I-band and near-infrared data. Intensity-mean I-band photometry onthe Cousins system is derived for 189 stars, and intensity-mean JHK dataon the Carter system is presented for 69 stars.

UVBY beta Photometric Data and Fourier Coefficients for Galactic Population I and Population II Cepheids
Photometric data in the uvby beta system are presented for a sample of98 Population I Cepheids and seven W Virginis or Population II Cepheids.The importance of the Fourier decomposition technique in the study ofthe structure of pulsating stars is stressed. Mean values and Fourierdecomposition coefficients for the V, b - y, m1, and c1 variations arecalculated. Also, mean values of H beta are provided. New times ofmaximum V light are reported for the majority of the stars in thesample. Significant shifts of the light and color curves were found insome Cepheids; these are explained by their period variations. Thesestars are highlighted in the text.

提交文章


相关链接

  • - 没有找到链接 -
提交链接


下列团体成员


观测天体数据

星座:御夫座
右阿森松:05h01m23.19s
赤纬:+39°57'37.4"
视星:7.59
距离:757.576 天文距离
右阿森松适当运动:-0.3
赤纬适当运动:-3.3
B-T magnitude:8.719
V-T magnitude:7.684

目录:
适当名称
HD 1989HD 31913
TYCHO-2 2000TYC 2899-2036-1
USNO-A2.0USNO-A2 1275-04156758
HIPHIP 23360

→ 要求更多目录从vizier